4,304 research outputs found

    Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation

    Get PDF
    Complex time-dependent Lyapunov equation (CTDLE), as an important means of stability analysis of control systems, has been extensively employed in mathematics and engineering application fields. Recursive neural networks (RNNs) have been reported as an effective method for solving CTDLE. In the previous work, zeroing neural networks (ZNNs) have been established to find the accurate solution of time-dependent Lyapunov equation (TDLE) in the noise-free conditions. However, noises are inevitable in the actual implementation process. In order to suppress the interference of various noises in practical applications, in this paper, a complex noise-resistant ZNN (CNRZNN) model is proposed and employed for the CTDLE solution. Additionally, the convergence and robustness of the CNRZNN model are analyzed and proved theoretically. For verification and comparison, three experiments and the existing noise-tolerant ZNN (NTZNN) model are introduced to investigate the effectiveness, convergence and robustness of the CNRZNN model. Compared with the NTZNN model, the CNRZNN model has more generality and stronger robustness. Specifically, the NTZNN model is a special form of the CNRZNN model, and the residual error of CNRZNN can converge rapidly and stably to order 10−5 when solving CTDLE under complex linear noises, which is much lower than order 10−1 of the NTZNN model. Analogously, under complex quadratic noises, the residual error of the CNRZNN model can converge to 2∥A∥F/ζ3 quickly and stably, while the residual error of the NTZNN model is divergent

    Proposing, developing and verification of a novel discrete-time zeroing neural network for solving future augmented Sylvester matrix equation

    Get PDF
    In this paper, a novel discrete-time advance zeroing neural network (DT-AZNN) model is proposed, developed and investigated for solving future augmented Sylvester matrix equation (F-ASME). First of all, based on the advance zeroing neural network (AZNN) design formula, a novel continuous-time advance zeroing neural network (CT-AZNN) model is shown for solving continuous-time augmented Sylvester matrix equation (CT-ASME). Secondly, a recently published discretization formula is further investigated with the optimal sampling gap of the discretization formula proposed. Then, for solving F-ASME, a novel DT-AZNN model is proposed based on the discretization formula. Theoretical analyses on the convergence property and the perturbation suppression performance of the DT-AZNN model are provided. Moreover, comparative numerical experimental results are conducted to prove the effectiveness and robustness of the proposed DT-AZNN model for solving F-ASME
    corecore