50 research outputs found

    Toward the implementation of analog LDPC decoders for long codewords

    Get PDF
    Error control codes are used in virtually every digital communication system. Traditionally, decoders have been implemented digitally. Analog decoders have been recently shown to have the potential to outperform digital decoders in terms of area and power/speed ratio. Analog designers have attempted to fully understand and exploit this potential for large decoders. However, large codes are generally still implemented with digital circuits. Nevertheless, in this thesis a number of aspects of analog decoder implementation are investigated with the hope of enabling the design of large analog decoders. In this thesis, we study and modify analog circuits used in a decoding algorithm known as the sum-product algorithm for implementation in a CMOS 90 nm technology. We apply a current-mode approach at the input nodes of these circuits and show through simulations that the power/speed ratio will be improved. Interested in studying the dynamics of decoders, we model an LDPC code in MATLAB's Simulink. We then apply the linearization technique on the modeled LDPC code in order to linearize the decoder about an initial state as its solution point. Challenges associated with decoder linearization are discussed. We also design and implement a chip comprised of the sum-product circuits with different configurations and sizes in order to study the effect of mismatch on the accuracy of the outputs. Unfortunately, testing of the chip fails as a result of errors in either the packaging process or fabrication

    Analog DFT Processors for OFDM Receivers: Circuit Mismatch and System Performance Analysis

    Full text link

    Low Power Decoding Circuits for Ultra Portable Devices

    Get PDF
    A wide spread of existing and emerging battery driven wireless devices do not necessarily demand high data rates. Rather, ultra low power, portability and low cost are the most desired characteristics. Examples of such applications are wireless sensor networks (WSN), body area networks (BAN), and a variety of medical implants and health-care aids. Being small, cheap and low power for the individual transceiver nodes, let those to be used in abundance in remote places, where access for maintenance or recharging the battery is limited. In such scenarios, the lifetime of the battery, in most cases, determines the lifetime of the individual nodes. Therefore, energy consumption has to be so low that the nodes remain operational for an extended period of time, even up to a few years. It is known that using error correcting codes (ECC) in a wireless link can potentially help to reduce the transmit power considerably. However, the power consumption of the coding-decoding hardware itself is critical in an ultra low power transceiver node. Power and silicon area overhead of coding-decoding circuitry needs to be kept at a minimum in the total energy and cost budget of the transceiver node. In this thesis, low power approaches in decoding circuits in the framework of the mentioned applications and use cases are investigated. The presented work is based on the 65nm CMOS technology and is structured in four parts as follows: In the first part, goals and objectives, background theory and fundamentals of the presented work is introduced. Also, the ECC block in coordination with its surrounding environment, a low power receiver chain, is presented. Designing and implementing an ultra low power and low cost wireless transceiver node introduces challenges that requires special considerations at various levels of abstraction. Similarly, a competitive solution often occurs after a conclusive design space exploration. The proposed decoder circuits in the following parts are designed to be embedded in the low power receiver chain, that is introduced in the first part. Second part, explores analog decoding method and its capabilities to be embedded in a compact and low power transceiver node. Analog decod- ing method has been theoretically introduced over a decade ago that followed with early proof of concept circuits that promised it to be a feasible low power solution. Still, with the increased popularity of low power sensor networks, it has not been clear how an analog decoding approach performs in terms of power, silicon area, data rate and integrity of calculations in recent technologies and for low data rates. Ultra low power budget, small size requirement and more relaxed demands on data rates suggests a decoding circuit with limited complexity. Therefore, the four-state (7,5) codes are considered for hardware implementation. Simulations to chose the critical design factors are presented. Consequently, to evaluate critical specifications of the decoding circuit, three versions of analog decoding circuit with different transistor dimensions fabricated. The measurements results reveal different trade-off possibilities as well as the potentials and limitations of the analog decoding approach for the target applications. Measurements seem to be crucial, since the available computer-aided design (CAD) tools provide limited assistance and precision, given the amount of calculations and parameters that has to be included in the simulations. The largest analog decoding core (AD1) takes 0.104mm2 on silicon and the other two (AD2 and AD3) take 0.035mm2 and 0.015mm2, respectively. Consequently, coding gain in trade-off with silicon area and throughput is presented. The analog decoders operate with 0.8V supply. The achieved coding gain is 2.3 dB at bit error rates (BER)=0.001 and 10 pico-Joules per bit (pJ/b) energy efficiency is reached at 2 Mbps. Third part of this thesis, proposes an alternative low power digital decoding approach for the same codes. The desired compact and low power goal has been pursued by designing an equivalent digital decoding circuit that is fabricated in 65nm CMOS technology and operates in low voltage (near-threshold) region. The architecture of the design is optimized in system and circuit levels to propose a competitive digital alternative. Similarly, critical specifications of the decoder in terms of power, area, data rate (speed) and integrity are reported according to the measurements. The digital implementation with 0.11mm2 area, consumes minimum energy at 0.32V supply which gives 9 pJ/b energy efficiency at 125 kb/s and 2.9 dB coding gain at BER=0.001. The forth and last part, compares the proposed design alternatives based on the fabricated chips and the results attained from the measurements to conclude the most suitable solution for the considered target applications. Advantages and disadvantages of both approaches are discussed. Possible extensions of this work is introduced as future work

    An Analog Decoder for Turbo-Structured Low-Density Parity-Check Codes

    Get PDF
    In this work, we consider a class of structured regular LDPC codes, called Turbo-Structured LDPC (TS-LDPC). TS-LDPC codes outperform random LDPC codes and have much lower error floor at high Signal-to-Noise Ratio (SNR). In this thesis, Min-Sum (MS) algorithms are adopted in the decoding of TS-LDPC codes due to their low complexity in the implementation. We show that the error performance of the MS-based TS-LDPC decoder is comparable with the Sum-Product (SP) based decoder and the error floor property of TS-LDPC codes is preserved. The TS-LDPC decoding algorithms can be performed by analog or digital circuitry. Analog decoders are preferred in many communication systems due to their potential for higher speed, lower power dissipation and smaller chip area compared to their digital counterparts. In this work, implementation of the (120, 75) MS-based TS-LDPC analog decoder is considered. The decoder chip consists of an analog decoder heart, digital input and digital output blocks. These digital blocks are required to deliver the received signal to the analog decoder heart and transfer the estimated codewords to the off-chip module. The analog decoder heart is an analog processor performing decoding on the Tanner graph of the code. Variable and check nodes are the main building blocks of analog decoder which are designed and evaluated. The check node is the most complicated unit in MS-based decoders. The minimizer circuit, the fundamental block of a check node, is designed to have a good trade-off between speed and accuracy. In addition, the structure of a high degree minimizer is proposed considering the accuracy, speed, power consumption and robustness against mismatch of the check node unit. The measurement results demonstrate that the error performance of the chip is comparable with theory. The SNR loss at Bit-Error-Rate of 10āˆ’5 is only 0.2dB compared to the theory while information throughput is 750Mb/s and the energy efficiency of the decoder chip is 17pJ/b. It is shown that the proposed decoder outperforms the analog decoders that have been fabricated to date in the sense of error performance, throughput and energy efficiency. This decoder is the first analog decoder that has ever been implemented in a sub 100-nm technology and it improves the throughput of analog decoders by a factor of 56. This decoder sets a new state-of-the-art in analog decoding

    Turbo decoder VLSI implementations for multi-standards wireless communication systems

    Get PDF

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of peopleā€™s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairmentsā€™ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the userā€™s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmittersā€™ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receiversā€™ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the usersā€™ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Reconfigurable architectures for beyond 3G wireless communication systems

    Get PDF

    Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Get PDF
    Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.National Science Foundatio

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiļ¬ed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ļ¬eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Low Power Register Exchange Viterbi Decoder for Wireless Applications

    Get PDF
    Since the invention of wireless telegraphy by Marconi in 1897, wireless technology has not only been enhanced, but also has become an integral part of our everyday lives. The first wireless mobile phone appeared around 1980. It was based on first generation analog technology that involved the use of Frequency Division Multiple Access (FDMA) techniques. Ten years later, second generation (2G) mobiles were dependent on Time Division Multiple Access (TDMA) techniques and Code Division Multiple Access (CDMA) techniques. Nowadays, third generation (3G) mobile systems depend on CDMA techniques to satisfy the need for faster, and more capacious data transmission in mobile wireless networks. Wideband CDMA (WCDMA) has become the major 3G air interface in the world. WCDMA employs convolutional encoding to encode voice and MPEG4 applications in the baseband transmitter at a maximum frequency of 2Mbps. To decode convolutional codes, Andrew Viterbi invented the Viterbi Decoder (VD) in 1967. In 2G mobile terminals, the VD consumes approximately one third of the power consumption of a baseband mobile transceiver. Thus, in 3G mobile systems, it is essential to reduce the power consumption of the VD. Conceptually, the Register Exchange (RE) method is simpler and faster than the Trace Back (TB) method for implementing the VD. However, in the RE method, each bit in the memory must be read and rewritten for each bit of information that is decoded. Therefore, the RE method is not appropriate for decoders with long constraint lengths. Although researchers have focused on implementing and optimizing the TB method, the RE method is focused on and modified in this thesis to reduce the RE method's power consumption. This thesis proposes a novel modified RE method by adopting a pointer concept for implementing the survivor memory unit (SMU) of the VD. A pointer is assigned to each register or memory location. The contents of thepointer which points to one register is altered to point to a second register, instead of copying the contents of the first register to the second. When the pointer concept is applied to the RE's SMU implementation (modified RE), there is no need to copy the contents of the SMU and rewrite them, but one row of memory is still needed for each state of the VD. Thus, the VDs in CDMA systems require 256 rows of memory. Applying the pointer concept reduces the VD's power consumption by 20 percent as estimated by the VHDL synthesis tool and by the new power reduction estimation that is introduced in this work. The coding gain for the modified RE method is 2. 6dB at an SNR of approximately 10-3. Furthermore, a novel zero-memory implementation for the modified RE method is proposed. If the initial state of the convolutional encoder is known, the entire SMU of the modified RE VD is reduced to only one row. Because the decoded data is generated in the required order, even this row of memory is dispensable. The zero-memory architecture is called the MemoryLess Viterbi Decoder (MLVD), and reduces the power consumption by approximately 50 percent. A prototype of the MLVD with a one third convolutional code rate and a constraint length of nine is mapped into a Xilinx 2V6000 chip, operating at 25 MHz with a decoding throughput of more than 3Mbps and a latency of two data bits. The other problem of the VD which is addressed in this thesis is the Add Compare Select Unit (ACSU) which is composed of 128 butterfly ACS modules. The ACSU's high parallelism has been previously solved by using a bit serial implementation. The 8-bit First Input First Output (FIFO) register, needed for the storage of each path metric (PM), is at the heart of the single bit serial ACS butterfly module. A new, simply controlled shift register is designed at the circuit level and integrated into the ACS module. A chip for the new module is also fabricated
    corecore