136 research outputs found

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    Simplified Network Signaling Architecture

    Get PDF
    The wheel has been reinvented several times in signaling protocols. Most signaling protocols re-invent, e.g., their own signaling transport methods, end-point discovery, measures for reliable exchange of messages and security features. Next Steps In Signaling (NSIS) framework was created in the IETF to design a single unified framework for various network signaling needs. The signaling transport layer of NSIS, the General Internet Signaling Transport (GIST), was specified in the IETF to provide a common transport service for signaling applications. The NSIS suite also includes two signaling protocols, NSIS Signaling Layer Protocols (NSLP), one for Quality of Service provisioning and one to configure middleboxes, in particular Network Address Translators and firewalls. The different signaling applications use GIST message delivery services through an API that consists of several operations. On top of common operations for sending and receiving data, the API also covers network events, errors and session state management. The API covers all GIST aspects, and allows application developers to have adequate knowledge of network state. However, as a result the API is very cumbersome to use, and an application developer needs to take care of non-trivial amount of details. A further challenge is that to create a new signaling application, one needs to acquire and register a unique NSLP identifier with the Internet Assigned Numbers Authority (IANA). This thesis presents the Messaging NSLP, that provides an abstraction layer to hide complex GIST features from the signaling application. Developers of Messaging Applications can use a simple Messaging API to open and close sessions and to transfer application data from one Messaging Application node to another. Prototype implementations of NSLP API and Messaging NSLP were created and tested to verify the protocol operation with various network scenarios. Overhead analysis of GIST and Messaging NSLP were performed, and results are compatible with earlier, third-party analysis. The Messaging NSLP can introduce up to 938 bytes of overhead to initiate a signaling session, but later signaling only introduces 78 bytes of header overhead

    QoS Abstraction Layer in 4G Access Networks

    Get PDF
    Tese de Mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto. 200

    A Framework for Controlling Quality of Sessions in Multimedia Systems

    Get PDF
    Collaborative multimedia systems demand overall session quality control beyond the level of quality of service (QoS) pertaining to individual connections in isolation of others. At every instant in time, the quality of the session depends on the actual QoS offered by the system to each of the application streams, as well as on the relative priorities of these streams according to the application semantics. We introduce a framework for achieving QoSess control and address the architectural issues involved in designing a QoSess control laver that realizes the proposed framework. In addition, we detail our contributions for two main components of the QoSess control layer. The first component is a scalable and robust feedback protocol, which allows for determining the worst case state among a group of receivers of a stream. This mechanism is used for controlling the transmission rates of multimedia sources in both cases of layered and single-rate multicast streams. The second component is a set of inter-stream adaptation algorithms that dynamically control the bandwidth shares of the streams belonging to a session. Additionally, in order to ensure stability and responsiveness in the inter-stream adaptation process, several measures are taken, including devising a domain rate control protocol. The performance of the proposed mechanisms is analyzed and their advantages are demonstrated by simulation and experimental results

    QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art

    Get PDF
    It has been widely acknowledged that future networks will need to provide significantly more capacity than current ones in order to deal with the increasing traffic demands of the users. Particularly in regions where optical fibers are unlikely to be deployed due to economical constraints, this is a major challenge. One option to address this issue is to complement existing narrow-band terrestrial networks with additional satellite connections. Satellites cover huge areas, and recent developments have considerably increased the available capacity while decreasing the cost. However, geostationary satellite links have significantly different link characteristics than most terrestrial links, mainly due to the higher signal propagation time, which often renders them not suitable for delay intolerant traffic. This paper surveys the current state-of-the-art of satellite and terrestrial network convergence. We mainly focus on scenarios in which satellite networks complement existing terrestrial infrastructures, i.e., parallel satellite and terrestrial links exist, in order to provide high bandwidth connections while ideally achieving a similar end user quality-of-experience as in high bandwidth terrestrial networks. Thus, we identify the technical challenges associated with the convergence of satellite and terrestrial networks and analyze the related work. Based on this, we identify four key functional building blocks, which are essential to distribute traffic optimally between the terrestrial and the satellite networks. These are the traffic requirement identification function, the link characteristics identification function, as well as the traffic engineering function and the execution function. Afterwards, we survey current network architectures with respect to these key functional building blocks and perform a gap analysis, which shows that all analyzed network architectures require adaptations to effectively support converged satellite and terrestrial networks. Hence, we conclude by formulating several open research questions with respect to satellite and terrestrial network convergence.This work was supported by the BATS Research Project through the European Union Seventh Framework Programme under Contract 317533

    An H.323-based adaptive QoS architecture

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Enabling architectures for QoS provisioning

    Get PDF
    Nowadays, new multimedia services have been deployed with stringent requirements for Quality of Service (QoS). The QoS provisioning is faced with the heterogeneity of system components. This thesis presents two research: on architectures for QoS management at the application layer, fulfilled mainly by software components; and on distributed software architectures for routing devices providing desired QoS at the underlying communication layer. At the application layer, the QoS architecture we propose, based on the Quality Driven Delivery (QDD) framework, deals with the increasing amount of QoS information of a distributed system. Based on various QoS information models we define for key actors of a distributed system, a QoS information base is generated using QoS information collecting and analysis tools. To translate QoS information among different components, we propose mechanisms to build QoS mapping rules from statistical data. Experiments demonstrate that efficient QoS decisions can be made effectively regarding the contribution of all system components with the help of the QoS information management system. At the underlying layer, we investigate distributed and scalable software architectures for QoS-enabled devices. Due to the huge volume of traffic to be switched, the traditional software model used for current generation routers, where the control card of the router performs all the processing tasks, is no longer appropriate in the near future. We propose a new scalable and distributed architecture to fully exploit the hardware platforms of the next generation routers, and to improve the quality of routers, particularly with respect to scalability and to a lesser extent to resiliency and availability. Our proposal is a distributed software framework where control tasks are shared among the control and line cards of the router. Specific architectures for routing, signaling protocols and routing table management are developed. We investigate the challenges for such distributed architectures and proposed various solutions to overcome them. Based on a general distributed software framework, an efficient scalable distributed architecture for MPLS/LDP and different scalable distributed schemes for the routing table manager (RTM) are developed. We also evaluate the performance of proposed distributed schemes and discuss where to deploy these architectures depending on the type of routers (i.e., their hardware capacity

    A quality of service based framework for dynamic, dependable systems

    Get PDF
    There is currently much UK government and industry interest towards the integration of complex computer-based systems, including those in the military domain. These systems can include both mission critical and safety critical applications, and therefore require the dependable communication of data. Current modular military systems requiring such performance guarantees are mostly based on parameters and system states fixed during design time, thus allowing a predictable estimate of performance. These systems can exhibit a limited degree of reconfiguration, but this is typically within the constraints of a predefined set of configurations. The ability to reconfigure systems more dynamically, could lead to further increased flexibility and adaptability, resulting in the better use of existing assets. Current software architecture models that are capable of providing this flexibility, however, tend to lack support for dependable performance. This thesis explores the benefits for the dependability of future dynamic systems, built on a publish/subscribe model, from using Quality of Service (QoS) methods to map application level data communication requirements to available network resources. Through this, original contributions to knowledge are created, including; the proposal of a QoS framework that specifies a way of defining flexible levels of QoS characteristics and their use in the negotiation of network resources, a simulation based evaluation of the QoS framework and specifically the choice of negotiation algorithm used, and a test-bed based feasibility study. Simulation experimentation conducted comparing different methods of QoS negotiation gives a clear indication that the use of the proposed QoS framework and flexible negotiation algorithm can provide a benefit in terms of system utility, resource utilisation, and system stability. The choice of negotiation algorithm has a particularly strong impact on these system properties. The cost of these benefits comes in terms of the processing power and execution time required to reach a decision on the acceptance of a subscriber. It is suggested, given this cost, that when computational resources are limited, a simpler priority based negotiation algorithm should be used. Where system resources are more abundant, however, the flexible negotiation algorithm proposed within the QoS framework can offer further benefits. Through the implementation of the QoS framework within an existing military avionics software architecture based emulator on a test-bed, both the technical challenges that will need to be overcome and, more importantly, the potential viability for the inclusion of the QoS framework have been demonstrated
    corecore