113 research outputs found

    Machine learning in the social and health sciences

    Get PDF
    The uptake of machine learning (ML) approaches in the social and health sciences has been rather slow, and research using ML for social and health research questions remains fragmented. This may be due to the separate development of research in the computational/data versus social and health sciences as well as a lack of accessible overviews and adequate training in ML techniques for non data science researchers. This paper provides a meta-mapping of research questions in the social and health sciences to appropriate ML approaches, by incorporating the necessary requirements to statistical analysis in these disciplines. We map the established classification into description, prediction, and causal inference to common research goals, such as estimating prevalence of adverse health or social outcomes, predicting the risk of an event, and identifying risk factors or causes of adverse outcomes. This meta-mapping aims at overcoming disciplinary barriers and starting a fluid dialogue between researchers from the social and health sciences and methodologically trained researchers. Such mapping may also help to fully exploit the benefits of ML while considering domain-specific aspects relevant to the social and health sciences, and hopefully contribute to the acceleration of the uptake of ML applications to advance both basic and applied social and health sciences research

    The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo

    Get PDF
    We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional influences on genes based on the integration of genome annotation and expression data. The learned network successfully predicted Halobacterium's global expression under novel perturbations with predictive power similar to that seen over training data. Several specific regulatory predictions were experimentally tested and verified

    Generalized topographic block model

    No full text
    Co-clustering leads to parsimony in data visualisation with a number of parameters dramatically reduced in comparison to the dimensions of the data sample. Herein, we propose a new generalized approach for nonlinear mapping by a re-parameterization of the latent block mixture model. The densities modeling the blocks are in an exponential family such that the Gaussian, Bernoulli and Poisson laws are particular cases. The inference of the parameters is derived from the block expectation–maximization algorithm with a Newton–Raphson procedure at the maximization step. Empirical experiments with textual data validate the interest of our generalized model

    User-Specific Bicluster-based Collaborative Filtering

    Get PDF
    Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2020Collaborative Filtering is one of the most popular and successful approaches for Recommender Systems. However, some challenges limit the effectiveness of Collaborative Filtering approaches when dealing with recommendation data, mainly due to the vast amounts of data and their sparse nature. In order to improve the scalability and performance of Collaborative Filtering approaches, several authors proposed successful approaches combining Collaborative Filtering with clustering techniques. In this work, we study the effectiveness of biclustering, an advanced clustering technique that groups rows and columns simultaneously, in Collaborative Filtering. When applied to the classic U-I interaction matrices, biclustering considers the duality relations between users and items, creating clusters of users who are similar under a particular group of items. We propose USBCF, a novel biclustering-based Collaborative Filtering approach that creates user specific models to improve the scalability of traditional CF approaches. Using a realworld dataset, we conduct a set of experiments to objectively evaluate the performance of the proposed approach, comparing it against baseline and state-of-the-art Collaborative Filtering methods. Our results show that the proposed approach can successfully suppress the main limitation of the previously proposed state-of-the-art biclustering-based Collaborative Filtering (BBCF) since BBCF can only output predictions for a small subset of the system users and item (lack of coverage). Moreover, USBCF produces rating predictions with quality comparable to the state-of-the-art approaches

    Biclustering electronic health records to unravel disease presentation patterns

    Get PDF
    Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2019A Esclerose Lateral Amiotrófica (ELA) é uma doença neurodegenerativa heterogénea com padrões de apresentação altamente variáveis. Dada a natureza heterogénea dos doentes com ELA, aquando do diagnóstico os clínicos normalmente estimam a progressão da doença utilizando uma taxa de decaimento funcional, calculada com base na Escala Revista de Avaliação Funcional de ELA (ALSFRS-R). A utilização de modelos de Aprendizagem Automática que consigam lidar com este padrões complexos é necessária para compreender a doença, melhorar os cuidados aos doentes e a sua sobrevivência. Estes modelos devem ser explicáveis para que os clínicos possam tomar decisões informadas. Desta forma, o nosso objectivo é descobrir padrões de apresentação da doença, para isso propondo uma nova abordagem de Prospecção de Dados: Descoberta de Meta-atributos Discriminativos (DMD), que utiliza uma combinação de Biclustering, Classificação baseada em Biclustering e Prospecção de Regras de Associação para Classificação. Estes padrões (chamados de Meta-atributos) são compostos por subconjuntos de atributos discriminativos conjuntamente com os seus valores, permitindo assim distinguir e caracterizar subgrupos de doentes com padrões similares de apresentação da doença. Os Registos de Saúde Electrónicos (RSE) utilizados neste trabalho provêm do conjunto de dados JPND ONWebDUALS (ONTology-based Web Database for Understanding Amyotrophic Lateral Sclerosis), composto por questões standardizadas acerca de factores de risco, mutações genéticas, atributos clínicos ou informação de sobrevivência de uma coorte de doentes e controlos seguidos pelo consórcio ENCALS (European Network to Cure ALS), que inclui vários países europeus, incluindo Portugal. Nesta tese a metodologia proposta foi utilizada na parte portuguesa do conjunto de dados ONWebDUALS para encontrar padrões de apresentação da doença que: 1) distinguissem os doentes de ELA dos seus controlos e 2) caracterizassem grupos de doentes de ELA com diferentes taxas de progressão (categorizados em grupos Lentos, Neutros e Rápidos). Nenhum padrão coerente emergiu das experiências efectuadas para a primeira tarefa. Contudo, para a segunda tarefa os padrões encontrados para cada um dos três grupos de progressão foram reconhecidos e validados por clínicos especialistas em ELA, como sendo características relevantes de doentes com progressão Lenta, Neutra e Rápida. Estes resultados sugerem que a nossa abordagem genérica baseada em Biclustering tem potencial para identificar padrões de apresentação noutros problemas ou doenças semelhantes.Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous neurodegenerative disease with a high variability of presentation patterns. Given the heterogeneous nature of ALS patients and targeting a better prognosis, clinicians usually estimate disease progression at diagnosis using the rate of decay computed from the Revised ALS Functional Rating Scale (ALSFRS-R). In this context, the use of Machine Learning models able to unravel the complexity of disease presentation patterns is paramount for disease understanding, targeting improved patient care and longer survival times. Furthermore, explainable models are vital, since clinicians must be able to understand the reasoning behind a given model’s result before making a decision that can impact a patient’s life. Therefore we aim at unravelling disease presentation patterns by proposing a new Data Mining approach called Discriminative Meta-features Discovery (DMD), which uses a combination of Biclustering, Biclustering-based Classification and Class Association Rule Mining. These patterns (called Metafeatures) are composed of discriminative subsets of features together with their values, allowing to distinguish and characterize subgroups of patients with similar disease presentation patterns. The Electronic Health Record (EHR) data used in this work comes from the JPND ONWebDUALS (ONTology-based Web Database for Understanding Amyotrophic Lateral Sclerosis) dataset, comprised of standardized questionnaire answers regarding risk factors, genetic mutations, clinical features and survival information from a cohort of patients and controls from ENCALS (European Network to Cure ALS), a consortium of diverse European countries, including Portugal. In this work the proposed methodology was used on the ONWebDUALS Portuguese EHR data to find disease presentation patterns that: 1) distinguish the ALS patients from their controls and 2) characterize groups of ALS patients with different progression rates (categorized into Slow, Neutral and Fast groups). No clear pattern emerged from the experiments performed for the first task. However, in the second task the patterns found for each of the three progression groups were recognized and validated by ALS expert clinicians, as being relevant characteristics of slow, neutral and fast progressing patients. These results suggest that our generic Biclustering approach is a promising way to unravel disease presentation patterns and could be applied to similar problems and other diseases
    • …
    corecore