71,957 research outputs found

    Counting of Teams in First-Order Team Logics

    Get PDF
    We study descriptive complexity of counting complexity classes in the range from #\#P to #\#\cdotNP. A corollary of Fagin's characterization of NP by existential second-order logic is that #\#P can be logically described as the class of functions counting satisfying assignments to free relation variables in first-order formulae. In this paper we extend this study to classes beyond #\#P and extensions of first-order logic with team semantics. These team-based logics are closely related to existential second-order logic and its fragments, hence our results also shed light on the complexity of counting for extensions of FO in Tarski's semantics. Our results show that the class #\#\cdotNP can be logically characterized by independence logic and existential second-order logic, whereas dependence logic and inclusion logic give rise to subclasses of #\#\cdotNP and #\#P , respectively. Our main technical result shows that the problem of counting satisfying assignments for monotone Boolean Σ1\Sigma_1-formulae is #\#\cdotNP-complete as well as complete for the function class generated by dependence logic.Peer reviewe

    Descriptive Complexity of #AC^0 Functions

    Get PDF
    We introduce a new framework for a descriptive complexity approach to arithmetic computations. We define a hierarchy of classes based on the idea of counting assignments to free function variables in first-order formulae. We completely determine the inclusion structure and show that #P and #AC^0 appear as classes of this hierarchy. In this way, we unconditionally place #AC^0 properly in a strict hierarchy of arithmetic classes within #P. We compare our classes with a hierarchy within #P defined in a model-theoretic way by Saluja et al. We argue that our approach is better suited to study arithmetic circuit classes such as #AC^0 which can be descriptively characterized as a class in our framework

    Definability of linear equation systems over groups and rings

    Get PDF
    Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability. All problems that we consider are decidable in polynomial time, but not expressible in fixed-point logic with counting. They also provide natural candidates for a separation of polynomial time from rank logics, which extend fixed-point logics by operators for determining the rank of definable matrices and which are sufficient for solvability problems over fields. Based on the structure theory of finite rings, we establish logical reductions among various solvability problems. Our results indicate that all solvability problems for linear equation systems that separate fixed-point logic with counting from PTIME can be reduced to solvability over commutative rings. Moreover, we prove closure properties for classes of queries that reduce to solvability over rings, which provides normal forms for logics extended with solvability operators. We conclude by studying the extent to which fixed-point logic with counting can express problems in linear algebra over finite commutative rings, generalising known results on the logical definability of linear-algebraic problems over finite fields

    Descriptive complexity of #P functions : A new perspective

    Get PDF
    We introduce a new framework for a descriptive complexity approach to arithmetic computations. We define a hierarchy of classes based on the idea of counting assignments to free function variables in first-order formulae. We completely determine the inclusion structure and show that #P and #AC0 appear as classes of this hierarchy. In this way, we unconditionally place #AC0 properly in a strict hierarchy of arithmetic classes within #P. Furthermore, we show that some of our classes admit efficient approximation in the sense of FPRAS. We compare our classes with a hierarchy within #P defined in a model-theoretic way by Saluja et al. and argue that our approach is better suited to study arithmetic circuit classes such as #AC0 which can be descriptively characterized as a class in our framework.Peer reviewe

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available
    corecore