294 research outputs found

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    On the descriptional complexity of iterative arrays

    Get PDF
    The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations

    More Structural Characterizations of Some Subregular Language Families by Biautomata

    Full text link
    We study structural restrictions on biautomata such as, e.g., acyclicity, permutation-freeness, strongly permutation-freeness, and orderability, to mention a few. We compare the obtained language families with those induced by deterministic finite automata with the same property. In some cases, it is shown that there is no difference in characterization between deterministic finite automata and biautomata as for the permutation-freeness, but there are also other cases, where it makes a big difference whether one considers deterministic finite automata or biautomata. This is, for instance, the case when comparing strongly permutation-freeness, which results in the family of definite language for deterministic finite automata, while biautomata induce the family of finite and co-finite languages. The obtained results nicely fall into the known landscape on classical language families.Comment: In Proceedings AFL 2014, arXiv:1405.527

    The Magic Number Problem for Subregular Language Families

    Full text link
    We investigate the magic number problem, that is, the question whether there exists a minimal n-state nondeterministic finite automaton (NFA) whose equivalent minimal deterministic finite automaton (DFA) has alpha states, for all n and alpha satisfying n less or equal to alpha less or equal to exp(2,n). A number alpha not satisfying this condition is called a magic number (for n). It was shown in [11] that no magic numbers exist for general regular languages, while in [5] trivial and non-trivial magic numbers for unary regular languages were identified. We obtain similar results for automata accepting subregular languages like, for example, combinational languages, star-free, prefix-, suffix-, and infix-closed languages, and prefix-, suffix-, and infix-free languages, showing that there are only trivial magic numbers, when they exist. For finite languages we obtain some partial results showing that certain numbers are non-magic.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Descriptional complexity of cellular automata and decidability questions

    Get PDF
    We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata

    On one-way cellular automata with a fixed number of cells

    Get PDF
    We investigate a restricted one-way cellular automaton (OCA) model where the number of cells is bounded by a constant number k, so-called kC-OCAs. In contrast to the general model, the generative capacity of the restricted model is reduced to the set of regular languages. A kC-OCA can be algorithmically converted to a deterministic finite automaton (DFA). The blow-up in the number of states is bounded by a polynomial of degree k. We can exhibit a family of unary languages which shows that this upper bound is tight in order of magnitude. We then study upper and lower bounds for the trade-off when converting DFAs to kC-OCAs. We show that there are regular languages where the use of kC-OCAs cannot reduce the number of states when compared to DFAs. We then investigate trade-offs between kC-OCAs with different numbers of cells and finally treat the problem of minimizing a given kC-OCA

    Operational State Complexity of Deterministic Unranked Tree Automata

    Full text link
    We consider the state complexity of basic operations on tree languages recognized by deterministic unranked tree automata. For the operations of union and intersection the upper and lower bounds of both weakly and strongly deterministic tree automata are obtained. For tree concatenation we establish a tight upper bound that is of a different order than the known state complexity of concatenation of regular string languages. We show that (n+1) ( (m+1)2^n-2^(n-1) )-1 vertical states are sufficient, and necessary in the worst case, to recognize the concatenation of tree languages recognized by (strongly or weakly) deterministic automata with, respectively, m and n vertical states.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    On non-recursive trade-offs between finite-turn pushdown automata

    Get PDF
    It is shown that between one-turn pushdown automata (1-turn PDAs) and deterministic finite automata (DFAs) there will be savings concerning the size of description not bounded by any recursive function, so-called non-recursive tradeoffs. Considering the number of turns of the stack height as a consumable resource of PDAs, we can show the existence of non-recursive trade-offs between PDAs performing k+ 1 turns and k turns for k >= 1. Furthermore, non-recursive trade-offs are shown between arbitrary PDAs and PDAs which perform only a finite number of turns. Finally, several decidability questions are shown to be undecidable and not semidecidable
    • …
    corecore