3,960 research outputs found

    Explainable subgraphs with surprising densities : a subgroup discovery approach

    Get PDF
    The connectivity structure of graphs is typically related to the attributes of the nodes. In social networks for example, the probability of a friendship between any pair of people depends on a range of attributes, such as their age, residence location, workplace, and hobbies. The high-level structure of a graph can thus possibly be described well by means of patterns of the form `the subgroup of all individuals with a certain properties X are often (or rarely) friends with individuals in another subgroup defined by properties Y', in comparison to what is expected. Such rules present potentially actionable and generalizable insight into the graph. We present a method that finds node subgroup pairs between which the edge density is interestingly high or low, using an information-theoretic definition of interestingness. Additionally, the interestingness is quantified subjectively, to contrast with prior information an analyst may have about the connectivity. This view immediatly enables iterative mining of such patterns. This is the first method aimed at graph connectivity relations between different subgroups. Our method generalizes prior work on dense subgraphs induced by a subgroup description. Although this setting has been studied already, we demonstrate for this special case considerable practical advantages of our subjective interestingness measure with respect to a wide range of (objective) interestingness measures

    Explainable subgraphs with surprising densities : a subgroup discovery approach

    Get PDF
    The connectivity structure of graphs is typically related to the attributes of the nodes. In social networks for example, the probability of a friendship between two people depends on their attributes, such as their age, address, and hobbies. The connectivity of a graph can thus possibly be understood in terms of patterns of the form 'the subgroup of individuals with properties X are often (or rarely) friends with individuals in another subgroup with properties Y'. Such rules present potentially actionable and generalizable insights into the graph. We present a method that finds pairs of node subgroups between which the edge density is interestingly high or low, using an information-theoretic definition of interestingness. This interestingness is quantified subjectively, to contrast with prior information an analyst may have about the graph. This view immediately enables iterative mining of such patterns. Our work generalizes prior work on dense subgraph mining (i.e. subgraphs induced by a single subgroup). Moreover, not only is the proposed method more general, we also demonstrate considerable practical advantages for the single subgroup special case

    Mining subjectively interesting patterns in rich data

    Get PDF

    Experiences with knowledge discovery paradigms

    Get PDF

    Experiences with knowledge discovery paradigms

    Get PDF
    corecore