464 research outputs found

    Structural water stabilizes protein motifs in liquid protein phase: The folding mechanism of short Ī²-sheets coupled to phase transition

    Get PDF
    Macromolecular associates, such as membraneless organelles or lipid-protein assemblies, provide a hydrophobic environment, i.e., a liquid protein phase (LP), where folding preferences can be drastically altered. LP as well as the associated phase change from water (W) is an intriguing phenomenon related to numerous biological processes and also possesses potential in nanotechnological applications. However, the energetic effects of a hydrophobic yet water-containing environment on protein folding are poorly understood. Here, we focus on small Ī²-sheets, the key motifs of proteins, undergoing structural changes in liquidā€“liquid phase separation (LLPS) and also model the mechanism of energy-coupled unfolding, e.g., in proteases, during W ā†’ LP transition. Due to the importance of the accurate description for hydrogen bonding patterns, the employed models were studied by using quantum mechanical calculations. The results demonstrate that unfolding is energetically less favored in LP by ~0.3ā€“0.5 kcal\ub7molāˆ’1 per residue in which the difference further increased by the presence of explicit structural water molecules, where the folded state was preferred by ~1.2ā€“2.3 kcal\ub7molāˆ’1 per residue relative to that in W. Energetics at the LP/W interfaces was also addressed by theoretical isodesmic reactions. While the models predict folded state preference in LP, the unfolding from LP to W renders the process highly favorable since the unfolded end state has >1 kcal\ub7molāˆ’1 per residue excess stabilization

    Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein

    Get PDF
    Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT). Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges of ab initio calculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation of R=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angle Ļ‡1 and small variations of Ļ‡2 of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism

    Development and Application of Efficient Methods for the Computation of Electronic Spectra of Large Systems

    Get PDF
    In this thesis, an efficient procedure to compute electronic excitation spectra of molecular systems is presented, focusing particularly on the computation of electronic circular dichroism (ECD) spectra. ECD spectroscopy is commonly used to distinguish between the two enantiomers of a chiral compound. Due to a strong sensitivity to the three-dimensional structure, reliable simulation of ECD spectra of solvated molecules by quantum chemical methods requires the knowledge of the relevant conformers along with the corresponding ECD signals (i.e., the individual transition intensities and energies) and Boltzmann populations. The latter point can be addressed by an established thermochemical protocol. It combines electronic energies computed in gas phase by dispersion-corrected density functional theory (DFT-D) with nuclear ro-vibrational and solvation contributions to yield the free energies in solution. This model is applied to study the association of two intermolecular frustrated Lewis pairs (FLPs). Though this case study does not aim at computing an ECD spectrum, it provides insight on whether such a scheme could also be suited to rank conformers in solution. Comparison to high-level reference methods and partially available experimental data suggests that the largest uncertainty can be attributed to the implicit solvation model. The errors for different dimer arrangements, however, appear to be within the order of 1 kcal mol-1, which is encouraging for the pursued computation of conformer free energies. In combination with a quadruple-Ī¶ basis set, hybrid DFT-D methods like the PW6B95-D3 are almost converged with respect to a complete basis and provide satisfactory results for the electronic energy contribution. Hence, they are recommended choices for the final electronic structure level to rank different conformers in routine calculations. The major part of this thesis deals with the development and application of cost-efficient excited state methods. The current state-of-the-art to compute ECD spectra for systems with roughly 100 atoms is the time-dependent density functional theory (TD-DFT) approach. Based on the latter, the simplified TD-DFT (sTD-DFT) method is developed. The excited state treatment is accelerated by at least three orders of magnitude, resulting from semiempirically approximated two-electron integrals and a significant reduction of the involved matrix dimensions. The introduced approximations are in line with the ones in the previously presented simplified Tamm-Dancoff approximated TD-DFT (sTDA-DFT). It is shown that the sTD-DFT and the sTDA-DFT approaches provide roughly the same accuracy for vertical excitation energies, as well as absorption and ECD spectra, as their parental schemes, i.e., TD-DFT and Tamm-Dancoff approximated TD-DFT (TDA-DFT), respectively. Thus, sTD-DFT is an efficient approach that is suitable for the computation of ECD spectra. Furthermore, sTD-DFT calculations conducted on "snapshots" from molecular dynamics (MD) simulations offer an appealing way to effectively incorporate vibronic effects without a quantum mechanical (QM) treatment of the nuclei. Such a treatment is exemplified for [16]helicene (102 atoms) and a di-substituted derivative (164 atoms). While the feasibility of applying sTDA-DFT to very large systems is demonstrated for two palladium(II) metallosupramolecular spheres (822 and 1644 atoms, respectively), it is also shown that this method produces ECD spectra of incorrect sign in the origin-independent dipole velocity formalism for extended Ļ€-systems. This behavior is due to the Tamm-Dancoff approximation (TDA) and, therefore, it is also present in TDA-DFT and the related configuration interaction singles (CIS) approach. Based on the insights obtained from this study, the A+B/2 correction is developed, which corrects the (simplified) TDA eigenvectors affording origin-independent dipole velocity ECD spectra of roughly (s)TD-DFT quality, while retaining the lower computational cost of the (s)TDA excited state treatment. Combination with a newly developed, purpose-specific extended tight-binding procedure for the ground state yields the ultra-fast sTDA-xTB approach. Due to different adjustments of the atomic orbital basis and the tight-binding Hamiltonian, the method is on a par with TDA-PBE0/def2-SV(P) for vertical excitation energies. The entire computation of an ECD spectrum ( The last part of this thesis reports on another purpose-specific extended tight-binding scheme, GFN-xTB, which provides molecular geometries, harmonic vibrational frequencies, and non-covalent interaction energies with comparable or better accuracy than existing semiempirical methods. Since parameters are available for all elements with Z ā‰¤ 86, the method offers great potential to sample the conformational space of almost arbitrary molecules with up to a few hundred atoms. In combination with the ultra-fast sTDA-xTB approach, ECD spectra can be computed in an almost "black box" manner, e.g., by computing spectra on MD snapshots. Together with the established thermochemistry protocol mentioned above, the newly developed architecture sets the stage for a fully automatic multi-level ECD procedure to be developed in the near future.Diese Dissertation stellt einen effizienten Ansatz zur Berechnung von elektronischen Anregungsspektren molekularer Systeme vor, wobei der besondere Fokus auf der Berechnung von elektronischen Circulardichroismus-(ECD-)Spektren liegt. Die ECD-Spektroskopie wird typischerweise verwendet, um zwischen den beiden Enantiomeren einer chiralen Verbindung zu unterscheiden. Aufgrund der hohen SensibilitƤt fĆ¼r die rƤumliche Struktur des MolekĆ¼ls wird zur zuverlƤssigen Simulation von ECD-Spektren die Kenntnis der relevanten Konformere inklusive ihrer Boltzmann-Populationen und der jeweiligen ECD-Signale (d.h. deren energetische Lage und IntensitƤten) benƶtigt. Die Populationen kƶnnen mithilfe eines literaturbekannten Thermochemieprotokolls unter Verwendung der dispersionskorrigierten Dichtefunktionaltheorie (DFT-D) nƤherungsweise berechnet werden. In der vorliegenden Arbeit wird dieses Modell verwendet, um die Komplexbildung von zwei intermolekularen frustrierten Lewispaaren (FLPs) zu untersuchen. Obwohl diese Fallstudie keine Berechnung eines ECD-Spektrums zum Ziel hat, geben die gewonnenen Erkenntnisse durchaus Aufschluss darĆ¼ber, ob sich der gewƤhlte Ansatz auch dazu eignet, die Populationen verschiedener Konformere zu bestimmen. Der Vergleich mit hochwertigen Vergleichsrechnungen auf der einen und mit zum Teil verfĆ¼gbaren experimentellen Daten auf der anderen Seite legt nahe, dass der grĆ¶ĆŸte Unsicherheitsfaktor in den SolvatationsbeitrƤgen vorliegt, welche mithilfe eines impliziten Lƶsungsmittelmodells bestimmt werden. Allerdings liegen deren geschƤtzte Fehler fĆ¼r unterschiedliche rƤumliche Anordnungen des Komplexes, d.h. bei einer gleichbleibenden SystemgrĆ¶ĆŸe von ca. 50-100 Atomen, lediglich bei etwa 1 kcal mol-1. FĆ¼r die Berechnung von freien konformellen Enthalpien ist mit Ƥhnlich groƟen Fehlern zu rechnen. Kombiniert mit Quadruple-Ī¶-BasissƤtzen weisen Hybrid-DFT-Methoden bereits nahezu konvergierte elektronische Energien auf und kƶnnen bei gleichzeitiger Verwendung einer Dispersionskorrektur relativ genaue GasphasenenergiebeitrƤge (so z.B. PW6B95-D3) zu den freien Enthalpien in Lƶsung beitragen. Der GroƟteil dieser Dissertation beschƤftigt sich mit der Entwicklung und Anwendung von kosteneffizienten Methoden zur Berechnung angeregter ZustƤnde. Die gegenwƤrtig am hƤufigsten verwendete Methode zur Berechnung von ECD-Spektren ist die zeitabhƤngige Dichtefunktionaltheorie (TD-DFT). Von dieser ausgehend wird die vereinfachte TD-DFT Methode (sTD-DFT) entwickelt. Aufgrund der semiempirischen NƤherung der Zweielektronenintegrale und der deutlichen Reduzierung der relevanten Matrixdimensionen wird die Berechnung der angeregten ZustƤnde um mindestens drei GrĆ¶ĆŸenordnungen beschleunigt. Diese NƤherungen sind konsistent zu jenen, die bereits in dem vereinfachten Tamm-Dancoff-genƤherten TD-DFT (sTDA-DFT) Ansatz eigefĆ¼hrt wurden. Im Vergleich zu den Ausgangsmethoden, also TD-DFT und seiner Tamm-Dancoff-NƤherung (TDA-DFT), ist weder eine signifikante BeeintrƤchtigung der senkrechten Anregungsenergien noch eine Verschlechterung der Absorptions- und ECD-IntensitƤten bemerkbar. Insbesondere die sTD-DFT Methode eignet sich zur effizienten und zuverlƤssigen Berechnung von ECD-Spektren. Die Effizienz der sTD-DFT Methode ermƶglicht unter anderem die Berechnung von Spektren auf Nichtminimumsstrukturen, die aus einer Molekulardynamik-(MD)-Simulation stammen. Somit kƶnnen vibronische Effekte nƤherungsweise erfasst werden, ohne dass ein quantenmechanischer (QM) Ansatz fĆ¼r die Kerne verwendet werden muss. Exemplarisch wird dieses Verfahren fĆ¼r das [16]Helicen (102 Atome) und einem disubstituierten Derivat (164 Atome) angewandt. Die Anwendbarkeit der sTDA-DFT Methode auf sehr groƟe Systeme wird am Beispiel von zwei Palladium(II)-metallosupramolekularen Komplexen (822 und 1644 Atome) verdeutlicht, doch zeigt eine weitere Studie, dass Tamm-Dancoff-genƤherte (TDA) Methoden fĆ¼r die ECD Spektren von ausgedehnten, delokalisierten Ļ€-Systemen im Impulsformalismus das falsche Vorzeichen liefern. Gleiches gilt fĆ¼r den verwandten Konfigurationswechselwirkungs-Ansatz mit Einfachanregungen (CIS). Basierend auf den Erkenntnissen dieser Studie ist es gelungen, die sogenannte A+B/2-NƤherung zu entwickeln, welche die entsprechenden Fehler in den TDA Eigenvektoren behebt, ohne die Kosten der Methode sichtlich zu erhƶhen. Durch die Kombination des so korrigierten vereinfachten TDA-Ansatzes mit einer speziell optimierten semiempirischen Tight-Binding-Methode fĆ¼r den Grundzustand wird die ƤuƟerst schnelle sTDA-xTB-Methode erhalten. Aufgrund verschiedener Modifikationen der Atomorbitalbasis und des Tight-Binding-Potentials erreicht diese Methode eine Ƥhnliche Genauigkeit fĆ¼r senkrechte Anregungsenergien wie z.B. eine DFT-basierende Rechnung auf TDA-PBE0/def2-SV(P) Niveau. Die beachtliche Effizienz der Methode wird im Vergleich zum bereits effizienten sTD-BHLYP/def2-SV(P) Ansatz fĆ¼r das [16]Helicen (alle Anregungen bis 9 eV) deutlich: WƤhrend letzterer Ansatz etwas mehr als eine Stunde Rechenzeit benƶtigt, ist das ECD-Spektrum mit sTDA-xTB bereits nach 10 s verfĆ¼gbar. Da die Parametrisierung nahezu das gesamte Periodensystem abdeckt, werden Standardrechnungen von Spektren groƟer Systeme (mit ca. 1000 Atomen) ermƶglicht, selbst wenn mehrere Konformere berĆ¼cksichtigt werden. Im letzten Teil der Arbeit wird eine weitere spezialisierte Tight-Binding-Methode vorgestellt (GFN-xTB), die wiederum auf die Berechnung von Geometrien, harmonischen Frequenzen und nichtkovalenten Wechselwirkungen ausgelegt ist und hierfĆ¼r bessere Ergebnisse liefert als vergleichbare semiempirische Methoden. Die VerfĆ¼gbarkeit von Parametern fĆ¼r alle Elemente mit Z ā‰¤ 86 ermƶglicht das Absuchen des konformellen Raums fĆ¼r unterschiedliche Systeme mit wenigen hundert Atomen. Zusammen mit sTDA-xTB sind in kĆ¼rzester Zeit Berechnungen von Sprektren z.B. entlang von MD-Trajektorien mƶglich. Vereint mit den bereits existierenden Thermochemieprotokollen sind somit die ersten Voraussetzungen fĆ¼r eine vƶllig automatische Prozedur zur Berechnung von ECD-Spektren geschaffen worden

    Nonadiabatic Effects on Peptide Vibrational Dynamics Induced by Conformational Changes

    Get PDF
    Quantum dynamical simulations of vibrational spectroscopy have been carried out for glycine dipeptide (CH3-CO-NH-CH2-CO-NH-CH3). Conformational structure and dynamics are modeled in terms of the two Ramachandran dihedral angles of the molecular backbone. Potential energy surfaces and harmonic frequencies are obtained from electronic structure calculations at the density functional theory (B3LYP/6-31+G(d)) level. The ordering of the energetically most stable isomers (C7 and C5) is reversed upon inclusion of the quantum mechanical zero point vibrational energy. Vibrational spectra of various isomers show distinct differences, mainly in the region of the amide modes, thereby relating conformational structures and vibrational spectra. Conformational dynamics is modeled by propagation of quantum mechanical wave packets. Assuming a directed energy transfer to the torsional degrees of freedom, transitions between the C7 and C5 minimum energy structures occur on a sub-picosecond timescale (700 ... 800 fs). Vibrationally non-adiabatic effects are investigated for the case of the coupled, fundamentally excited amide I states. Using a two state-two mode model, the resulting wave packet dynamics is found to be strongly non-adiabatic due to the presence of a seam of the two potential energy surfaces. Initially prepared adiabatic vibrational states decay upon conformational change on a timescale of 200 ... 500 fs with population transfer of more than 50 % between the coupled amide I states. Also the vibrational energy transport between localized (excitonic) amide I vibrational states is strongly influenced by torsional dynamics of the molecular backbone where both enhanced and reduced decay rates are found. All these observations should allow the detection of conformational changes by means of time-dependent vibrational spectroscopy

    Implications for the Binding of the Protein G5P to DNA

    Get PDF
    Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration- dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms

    Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction

    Get PDF
    Ā© 2020 American Chemical Society. Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future

    Trends in template/fragment-free protein structure prediction

    Get PDF
    Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward

    Computational examination of biomolecular systems related to Alzheimerā€™s and Parkinsonā€™s diseases

    Get PDF
    The aggregation of proteins has long been implicated in the pathogenesis of neurodegenerative disorders, such as Alzheimerā€™s and Parkinsonā€™s diseases, through their deposition in amyloid plaques and Lewy bodies. The interaction of metal ions with these proteins has attracted signif- icant attention due to their potential role in accelerating protein aggregation and neurotoxicity. In this thesis, Amyloid-Ī² (AĪ²) and Ī±-Synuclein (Ī±S) were studied using molecular dynamics (MD), to investigate the effect of metal ions on their structure and folding. Given the wide array of force fields available, the first part of this thesis focused on the evaluation of force fields and solvent models in simulating the average structure of AĪ²16 in complexation with Zn(II), derived from an NMR study. The parameterisation of the metal ion and coordinating atoms was performed using quantum mechanic (QM) calculations on the metal-binding site (His6, His13, His14, Glu11), and incorporated into the force field to allow for the description of the metal ion and coordinating residues. The conformational landscape explored during the MD was expanded using accelerated MD (aMD), through the introduction of an energy bias to permit the crossing of energy barriers. The simulations revealed the ff14SB force field with the GBSA implicit solvent model to be the most accurate in reproducing the experimental structure. The parameterisation described above was thus applied to a more disordered system, look- ing at the coordination of Cu(II) to Ī±S. The simulations revealed that the force field was less ideal in reproducing the experimental characteristics of the protein, with better representation instead coming from ff03ws with the OBC continuum model. The aMD simulations revealed that the Cu(II) coordination to Ī±S increased the stability of Ī²-hairpins, while decreasing the N-terminal helical content, which has the potential to increase the rate of secondary nucleation. The Cu(I) coordination to Ī±S was also investigated, due to the copper ionsā€™ interconversion during the catalytic release of reactive oxygen species. The systemā€™s average structure was suggestive of an intermediary state between the Cu(II) and apo forms. Following that, a differ- ent way of simulating the metal ion was implemented, through the use of cationic dummy atom models, eliminating the need for pre-defined bonded interactions with the coordinating atoms. This allowed the calculation of relative binding affinities to the metal ion. The model was also applied to study the Ī±S-dimer in the presence and absence of Cu(II). The simulations on these systems, suggests the metal ion is a stabilising factor in the aggregation of Ī±S, facilitating the formation of Ī²-strand interlinkages between the chains. The last part of this thesis, looked at two of the modifications often described in PD patients, in particular the phosphorylation at S129 (pS129) and the A53T mutation. The former systems suggested a protective effect to the aggregation of the protein, while the A53T mutation, espe- cially in the case of the Cu(II)-bound system, presented longer-lasting Ī²-characteristics, which could be indicative of a more stable aggregation with other peptides. Taken together, the results provide an understanding of the structural changes elicited by the association of these metal ions with the proteins, along with their influence on the aggregation process
    • ā€¦
    corecore