18 research outputs found

    Building and Combining Matching Algorithms

    Get PDF
    International audienceThe concept of matching is ubiquitous in declarative programming and in automated reasoning. For instance, it is a key mechanism to run rule-based programs and to simplify clauses generated by theorem provers. A matching problem can be seen as a particular conjunction of equations where each equation has a ground side. We give an overview of techniques that can be applied to build and combine matching algorithms. First, we survey mutation-based techniques as a way to build a generic matching algorithm for a large class of equational theories. Second, combination techniques are introduced to get combined matching algorithms for disjoint unions of theories. Then we show how these combination algorithms can be extended to handle non-disjoint unions of theories sharing only constructors. These extensions are possible if an appropriate notion of normal form is computable

    SCL with Theory Constraints

    Get PDF
    We lift the SCL calculus for first-order logic without equality to the SCL(T) calculus for first-order logic without equality modulo a background theory. In a nutshell, the SCL(T) calculus describes a new way to guide hierarchic resolution inferences by a partial model assumption instead of an a priori fixed order as done for instance in hierarchic superposition. The model representation consists of ground background theory literals and ground foreground first-order literals. One major advantage of the model guided approach is that clauses generated by SCL(T) enjoy a non-redundancy property that makes expensive testing for tautologies and forward subsumption completely obsolete. SCL(T) is a semi-decision procedure for pure clause sets that are clause sets without first-order function symbols ranging into the background theory sorts. Moreover, SCL(T) can be turned into a decision procedure if the considered combination of a first-order logic modulo a background theory enjoys an abstract finite model property.Comment: 22 page

    On rational entailment for Propositional Typicality Logic

    Get PDF
    Description Logics (DLs) under Rational Closure (RC) is a well-known framework for non-monotonic reasoning in DLs. In this paper, we address the concept subsumption decision problem under RC for nominal safe ELO⊥, a notable and practically important DL representative of the OWL 2 profile OWL 2 EL. Our contribution here is to define a polynomial time subsumption procedure for nominal safe ELO⊥ under RC that relies entirely on a series of classical, monotonic EL⊥ subsumption tests. Therefore, any existing classical monotonic EL⊥ reasoner can be used as a black box to implement our method. We then also adapt the method to one of the known extensions of RC for DLs, namely Defeasible Inheritance-based DLs without losing the computational tractability

    A data complexity and rewritability tetrachotomy of ontology-mediated queries with a covering axiom

    Get PDF
    Aiming to understand the data complexity of answering conjunctive queries mediated by an axiom stating that a class is covered by the union of two other classes, we show that deciding their first-order rewritability is PSPACE-hard and obtain a number of sufficient conditions for membership in AC0, L, NL, and P. Our main result is a complete syntactic AC0/NL/P/CONP tetrachotomy of path queries under the assumption that the covering classes are disjoint

    Bibliographical Sources for Buddhist Studies from the Viewpoint of Buddhist Philology (Version 2.5)

    Get PDF

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore