6,462 research outputs found

    Covariance estimation using conjugate gradient for 3D classification in Cryo-EM

    Full text link
    Classifying structural variability in noisy projections of biological macromolecules is a central problem in Cryo-EM. In this work, we build on a previous method for estimating the covariance matrix of the three-dimensional structure present in the molecules being imaged. Our proposed method allows for incorporation of contrast transfer function and non-uniform distribution of viewing angles, making it more suitable for real-world data. We evaluate its performance on a synthetic dataset and an experimental dataset obtained by imaging a 70S ribosome complex

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81

    Full text link
    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations, we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M=108.96±0.12MM=10^{8.96\pm 0.12} M_{\odot} subhalo near one of the images, with a significance of 6.9σ6.9\sigma in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter subhalos down to M2×107MM\sim 2\times 10^7 M_{\odot}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted dark matter subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 dataset (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of Λ\LambdaCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.Comment: 18 pages, 13 figures, Comments are welcom

    Optimization problems in electron microscopy of single particles

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-006-0078-8Electron Microscopy is a valuable tool for the elucidation of the three-dimensional structure of macromolecular complexes. Knowledge about the macromolecular structure provides important information about its function and how it is carried out. This work addresses the issue of three-dimensional reconstruction of biological macromolecules from electron microscopy images. In particular, it focuses on a methodology known as “single-particles” and makes a thorough review of all those steps that can be expressed as an optimization problem. In spite of important advances in recent years, there are still unresolved challenges in the field that offer an excellent testbed for new and more powerful optimization techniques.We acknowledge partial support from the “Comunidad Autónoma de Madrid” through grants CAM-07B-0032-2002, GR/SAL/0653/2004 and GR/SAL/0342/2004, the “Comisión Interministerial de Ciencia yTecnologia” of Spain through grants BIO2001-1237, BIO2001-4253-E, BIO2001-4339-E, BIO2002- 10855-E, BFU2004-00217/BMC, the Spanish FIS grant (G03/185), the European Union through grants QLK2- 2000-00634, QLRI-2000-31237, QLRT-2000-0136, QLRI-2001-00015, FP6-502828 and the NIH through grant HL70472. Alberto Pascual and Roberto Marabini acknowledge support by the Spanish Ramon y Cajal Program

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    Extracting the Structure and Conformations of Biological Entities from Large Datasets

    Get PDF
    In biology, structure determines function, which often proceeds via changes in conformation. Efficient means for determining structure exist, but mapping conformations continue to present a serious challenge. Single-particles approaches, such as cryogenic electron microscopy (cryo-EM) and emerging diffract & destroy X-ray techniques are, in principle, ideally positioned to overcome these challenges. But the algorithmic ability to extract information from large heterogeneous datasets consisting of unsorted snapshots - each emanating from an unknown orientation of an object in an unknown conformation - remains elusive. It is the objective of this thesis to describe and validate a powerful suite of manifold-based algorithms able to extract structural and conformational information from large datasets. These computationally efficient algorithms offer a new approach to determining the structure and conformations of viruses and macromolecules. After an introduction, we demonstrate a distributed, exact k-Nearest Neighbor Graph (k-NNG) construction method, in order to establish a firm algorithmic basis for manifold-based analysis. The proposed algorithm uses Graphics Processing Units (GPUs) and exploits multiple levels of parallelism in distributed computational environment and it is scalable for different cluster sizes, with each compute node in the cluster containing multiple GPUs. Next, we present applications of manifold-based analysis in determining structure and conformational variability. Using the Diffusion Map algorithm, a new approach is presented, which is capable of determining structure of symmetric objects, such as viruses, to 1/100th of the object diameter, using low-signal diffraction snapshots. This is demonstrated by means of a successful 3D reconstruction of the Satellite Tobacco Necrosis Virus (STNV) to atomic resolution from simulated diffraction snapshots with and without noise. We next present a new approach for determining discrete conformational changes of the enzyme Adenylate kinase (ADK) from very large datasets of up to 20 million snapshots, each with ~104 pixels. This exceeds by an order of magnitude the largest dataset previously analyzed. Finally, we present a theoretical framework and an algorithmic pipeline for capturing continuous conformational changes of the ribosome from ultralow-signal (-12dB) experimental cryo-EM. Our analysis shows a smooth, concerted change in molecular structure in two-dimensional projection, which might be indicative of the way the ribosome functions as a molecular machine. The thesis ends with a summary and future prospects
    corecore