57,998 research outputs found

    Learning joint feature adaptation for zero-shot recognition

    Full text link
    Zero-shot recognition (ZSR) aims to recognize target-domain data instances of unseen classes based on the models learned from associated pairs of seen-class source and target domain data. One of the key challenges in ZSR is the relative scarcity of source-domain features (e.g. one feature vector per class), which do not fully account for wide variability in target-domain instances. In this paper we propose a novel framework of learning data-dependent feature transforms for scoring similarity between an arbitrary pair of source and target data instances to account for the wide variability in target domain. Our proposed approach is based on optimizing over a parameterized family of local feature displacements that maximize the source-target adaptive similarity functions. Accordingly we propose formulating zero-shot learning (ZSL) using latent structural SVMs to learn our similarity functions from training data. As demonstration we design a specific algorithm under the proposed framework involving bilinear similarity functions and regularized least squares as penalties for feature displacement. We test our approach on several benchmark datasets for ZSR and show significant improvement over the state-of-the-art. For instance, on aP&Y dataset we can achieve 80.89% in terms of recognition accuracy, outperforming the state-of-the-art by 11.15%

    Sequential Bayesian updating for Big Data

    Get PDF
    The velocity, volume, and variety of big data present both challenges and opportunities for cognitive science. We introduce sequential Bayesian updat-ing as a tool to mine these three core properties. In the Bayesian approach, we summarize the current state of knowledge regarding parameters in terms of their posterior distributions, and use these as prior distributions when new data become available. Crucially, we construct posterior distributions in such a way that we avoid having to repeat computing the likelihood of old data as new data become available, allowing the propagation of information without great computational demand. As a result, these Bayesian methods allow continuous inference on voluminous information streams in a timely manner. We illustrate the advantages of sequential Bayesian updating with data from the MindCrowd project, in which crowd-sourced data are used to study Alzheimer’s Dementia. We fit an extended LATER (Linear Ap-proach to Threshold with Ergodic Rate) model to reaction time data from the project in order to separate two distinct aspects of cognitive functioning: speed of information accumulation and caution
    • …
    corecore