12 research outputs found

    Algorithms for coding scanned halftone pictures

    Get PDF

    Data compression of scanned halftone images

    Full text link

    Recaptured Raw Screen Image and Video Demoir\'eing via Channel and Spatial Modulations

    Full text link
    Capturing screen contents by smartphone cameras has become a common way for information sharing. However, these images and videos are often degraded by moir\'e patterns, which are caused by frequency aliasing between the camera filter array and digital display grids. We observe that the moir\'e patterns in raw domain is simpler than those in sRGB domain, and the moir\'e patterns in raw color channels have different properties. Therefore, we propose an image and video demoir\'eing network tailored for raw inputs. We introduce a color-separated feature branch, and it is fused with the traditional feature-mixed branch via channel and spatial modulations. Specifically, the channel modulation utilizes modulated color-separated features to enhance the color-mixed features. The spatial modulation utilizes the feature with large receptive field to modulate the feature with small receptive field. In addition, we build the first well-aligned raw video demoir\'eing (RawVDemoir\'e) dataset and propose an efficient temporal alignment method by inserting alternating patterns. Experiments demonstrate that our method achieves state-of-the-art performance for both image and video demori\'eing. We have released the code and dataset in https://github.com/tju-chengyijia/VD_raw

    Semantic Photo Manipulation with a Generative Image Prior

    Full text link
    Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.Comment: SIGGRAPH 201

    Efficient Halftoning via Deep Reinforcement Learning

    Full text link
    Halftoning aims to reproduce a continuous-tone image with pixels whose intensities are constrained to two discrete levels. This technique has been deployed on every printer, and the majority of them adopt fast methods (e.g., ordered dithering, error diffusion) that fail to render structural details, which determine halftone's quality. Other prior methods of pursuing visual pleasure by searching for the optimal halftone solution, on the contrary, suffer from their high computational cost. In this paper, we propose a fast and structure-aware halftoning method via a data-driven approach. Specifically, we formulate halftoning as a reinforcement learning problem, in which each binary pixel's value is regarded as an action chosen by a virtual agent with a shared fully convolutional neural network (CNN) policy. In the offline phase, an effective gradient estimator is utilized to train the agents in producing high-quality halftones in one action step. Then, halftones can be generated online by one fast CNN inference. Besides, we propose a novel anisotropy suppressing loss function, which brings the desirable blue-noise property. Finally, we find that optimizing SSIM could result in holes in flat areas, which can be avoided by weighting the metric with the contone's contrast map. Experiments show that our framework can effectively train a light-weight CNN, which is 15x faster than previous structure-aware methods, to generate blue-noise halftones with satisfactory visual quality. We also present a prototype of deep multitoning to demonstrate the extensibility of our method

    Digital imaging technology assessment: Digital document storage project

    Get PDF
    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes
    corecore