1,595 research outputs found

    ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics

    Full text link
    Physical simulators have been widely used in robot planning and control. Among them, differentiable simulators are particularly favored, as they can be incorporated into gradient-based optimization algorithms that are efficient in solving inverse problems such as optimal control and motion planning. Simulating deformable objects is, however, more challenging compared to rigid body dynamics. The underlying physical laws of deformable objects are more complex, and the resulting systems have orders of magnitude more degrees of freedom and therefore they are significantly more computationally expensive to simulate. Computing gradients with respect to physical design or controller parameters is typically even more computationally challenging. In this paper, we propose a real-time, differentiable hybrid Lagrangian-Eulerian physical simulator for deformable objects, ChainQueen, based on the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM can simulate deformable objects including contact and can be seamlessly incorporated into inference, control and co-design systems. We demonstrate that our simulator achieves high precision in both forward simulation and backward gradient computation. We have successfully employed it in a diverse set of control tasks for soft robots, including problems with nearly 3,000 decision variables.Comment: In submission to ICRA 2019. Supplemental Video: https://www.youtube.com/watch?v=4IWD4iGIsB4 Project Page: https://github.com/yuanming-hu/ChainQuee

    Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion

    Full text link
    We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the KαK_\alpha sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels

    Fast GPU-Based Two-Way Continuous Collision Handling

    Full text link
    Step-and-project is a popular way to simulate non-penetrated deformable bodies in physically-based animation. First integrating the system in time regardless of contacts and post resolving potential intersections practically strike a good balance between plausibility and efficiency. However, existing methods could be defective and unsafe when the time step is large, taking risks of failures or demands of repetitive collision testing and resolving that severely degrade performance. In this paper, we propose a novel two-way method for fast and reliable continuous collision handling. Our method launches the optimization at both ends of the intermediate time-integrated state and the previous intersection-free state, progressively generating a piecewise-linear path and finally reaching a feasible solution for the next time step. Technically, our method interleaves between a forward step and a backward step at a low cost, until the result is conditionally converged. Due to a set of unified volume-based contact constraints, our method can flexibly and reliably handle a variety of codimensional deformable bodies, including volumetric bodies, cloth, hair and sand. The experiments show that our method is safe, robust, physically faithful and numerically efficient, especially suitable for large deformations or large time steps

    DefGraspNets: Grasp Planning on 3D Fields with Graph Neural Nets

    Full text link
    Robotic grasping of 3D deformable objects is critical for real-world applications such as food handling and robotic surgery. Unlike rigid and articulated objects, 3D deformable objects have infinite degrees of freedom. Fully defining their state requires 3D deformation and stress fields, which are exceptionally difficult to analytically compute or experimentally measure. Thus, evaluating grasp candidates for grasp planning typically requires accurate, but slow 3D finite element method (FEM) simulation. Sampling-based grasp planning is often impractical, as it requires evaluation of a large number of grasp candidates. Gradient-based grasp planning can be more efficient, but requires a differentiable model to synthesize optimal grasps from initial candidates. Differentiable FEM simulators may fill this role, but are typically no faster than standard FEM. In this work, we propose learning a predictive graph neural network (GNN), DefGraspNets, to act as our differentiable model. We train DefGraspNets to predict 3D stress and deformation fields based on FEM-based grasp simulations. DefGraspNets not only runs up to 1500 times faster than the FEM simulator, but also enables fast gradient-based grasp optimization over 3D stress and deformation metrics. We design DefGraspNets to align with real-world grasp planning practices and demonstrate generalization across multiple test sets, including real-world experiments.Comment: To be published in the IEEE Conference on Robotics and Automation (ICRA), 202

    Rieoptax: Riemannian Optimization in JAX

    Full text link
    We present Rieoptax, an open source Python library for Riemannian optimization in JAX. We show that many differential geometric primitives, such as Riemannian exponential and logarithm maps, are usually faster in Rieoptax than existing frameworks in Python, both on CPU and GPU. We support various range of basic and advanced stochastic optimization solvers like Riemannian stochastic gradient, stochastic variance reduction, and adaptive gradient methods. A distinguishing feature of the proposed toolbox is that we also support differentially private optimization on Riemannian manifolds

    Simulation of hyperelastic materials in real-time using Deep Learning

    Get PDF
    The finite element method (FEM) is among the most commonly used numerical methods for solving engineering problems. Due to its computational cost, various ideas have been introduced to reduce computation times, such as domain decomposition, parallel computing, adaptive meshing, and model order reduction. In this paper we present U-Mesh: a data-driven method based on a U-Net architecture that approximates the non-linear relation between a contact force and the displacement field computed by a FEM algorithm. We show that deep learning, one of the latest machine learning methods based on artificial neural networks, can enhance computational mechanics through its ability to encode highly non-linear models in a compact form. Our method is applied to two benchmark examples: a cantilever beam and an L-shape subject to moving punctual loads. A comparison between our method and proper orthogonal decomposition (POD) is done through the paper. The results show that U-Mesh can perform very fast simulations on various geometries, mesh resolutions and number of input forces with very small errors
    • …
    corecore