52 research outputs found

    Perspective in Two Dimensions for Computer Graphics

    Get PDF
    Computer graphics perspective is based on photography, the pin-hole camera model. This thesis examines the perspective as practiced by artists, who develop the picture geometry within the planar surface of the canvas. Their approach is flexible, depth is simulated with planar composition as the primary geometry. Renaissance artists discovered construction methods to draw the foreshortening of realistic pictures: the construction of a tiled floor in perspective was fundamental. This thesis presents the framework, a computer program, I developed to create the perspective of pictures based on the geometry practices of artists. Construction lines on the image plane simulate the 3D geometry of the pictorial space; cartoons of foreground elements are manipulated in 2D within the picture perspective; projected shadows, examples of double projection, are also included. A formalism, reformulating algebraically the straight-edge and compass evaluations, generalizes the planar geometry that solves the challenge of depicting 3D. A revised Painter’s algorithm produces the occlusions between the picture elements from sequencing them from their definitions on the canvas

    Towards A Self-calibrating Video Camera Network For Content Analysis And Forensics

    Get PDF
    Due to growing security concerns, video surveillance and monitoring has received an immense attention from both federal agencies and private firms. The main concern is that a single camera, even if allowed to rotate or translate, is not sufficient to cover a large area for video surveillance. A more general solution with wide range of applications is to allow the deployed cameras to have a non-overlapping field of view (FoV) and to, if possible, allow these cameras to move freely in 3D space. This thesis addresses the issue of how cameras in such a network can be calibrated and how the network as a whole can be calibrated, such that each camera as a unit in the network is aware of its orientation with respect to all the other cameras in the network. Different types of cameras might be present in a multiple camera network and novel techniques are presented for efficient calibration of these cameras. Specifically: (i) For a stationary camera, we derive new constraints on the Image of the Absolute Conic (IAC). These new constraints are shown to be intrinsic to IAC; (ii) For a scene where object shadows are cast on a ground plane, we track the shadows on the ground plane cast by at least two unknown stationary points, and utilize the tracked shadow positions to compute the horizon line and hence compute the camera intrinsic and extrinsic parameters; (iii) A novel solution to a scenario where a camera is observing pedestrians is presented. The uniqueness of formulation lies in recognizing two harmonic homologies present in the geometry obtained by observing pedestrians; (iv) For a freely moving camera, a novel practical method is proposed for its self-calibration which even allows it to change its internal parameters by zooming; and (v) due to the increased application of the pan-tilt-zoom (PTZ) cameras, a technique is presented that uses only two images to estimate five camera parameters. For an automatically configurable multi-camera network, having non-overlapping field of view and possibly containing moving cameras, a practical framework is proposed that determines the geometry of such a dynamic camera network. It is shown that only one automatically computed vanishing point and a line lying on any plane orthogonal to the vertical direction is sufficient to infer the geometry of a dynamic network. Our method generalizes previous work which considers restricted camera motions. Using minimal assumptions, we are able to successfully demonstrate promising results on synthetic as well as on real data. Applications to path modeling, GPS coordinate estimation, and configuring mixed-reality environment are explored

    Arithmetic and Hyperbolic Structures in String Theory

    Full text link
    This monograph is an updated and extended version of the author's PhD thesis. It consists of an introductory text followed by two separate parts which are loosely related but may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of a spacelike singularity (the "BKL-limit"). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be described in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of the theory. Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are described by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by automorphic forms on the double quotient G(Z)\G/K. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on non-holomorphic Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also show how these techniques can be applied to hypermultiplet moduli spaces in type II Calabi-Yau compactifications, and we provide a detailed analysis for the universal hypermultiplet.Comment: 346 pages, updated and extended version of the author's PhD thesi

    Olivet Nazarene College Annual Catalog 1943-1944

    Get PDF
    https://digitalcommons.olivet.edu/acaff_catalog/1029/thumbnail.jp
    • …
    corecore