1,494 research outputs found

    OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems

    Full text link
    The domains and problems for which it would be desirable to introduce information systems are currently very complex and the software development process is thus of the same complexity. One of these domains is health-care. Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are software development approaches that raise to deal with complexity, to reduce time and cost of development, augmenting flexibility and interoperability. However, many techniques and approaches that have been introduced are of little use when not provided under a formalized and well-documented methodological umbrella. A methodology gives the process a well-defined structure that helps in fast and efficient analysis and design, trouble-free implementation, and finally results in the software product improved quality. While MDD and SOA are gaining their momentum toward the adoption in the software industry, there is one critical issue yet to be addressed before its power is fully realized. It is beyond dispute that requirements engineering (RE) has become a critical task within the software development process. Errors made during this process may have negative effects on subsequent development steps, and on the quality of the resulting software. For this reason, the MDD and SOA development approaches should not only be taken into consideration during design and implementation as usually occurs, but also during the RE process. The contribution of this dissertation aims at improving the development process of health-care applications by proposing OpenUP/MDRE methodology. The main goal of this methodology is to enrich the development process of SOA-based health-care systems by focusing on the requirements engineering processes in the model-driven context. I believe that the integration of those two highly important areas of software engineering, gathered in one consistent process, will provide practitioners with many benets. It is noteworthy that the approach presented here was designed for SOA-based health-care applications, however, it also provides means to adapt it to other architectural paradigms or domains. The OpenUP/MDRE approach is an extension of the lightweight OpenUP methodology for iterative, architecture-oriented and model-driven software development. The motivation for this research comes from the experience I gained as a computer science professional working on the health-care systems. This thesis also presents a comprehensive study about: i) the requirements engineering methods and techniques that are being used in the context of the model-driven development, ii) known generic but flexible and extensible methodologies, as well as approaches for service-oriented systems development, iii) requirements engineering techniques used in the health-care industry. Finally, OpenUP/MDRE was applied to a concrete industrial health-care project in order to show the feasibility and accuracy of this methodological approach.Loniewski, G. (2010). OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems. http://hdl.handle.net/10251/11652Archivo delegad

    Mapping Design Contributions in Information Systems Research: The Design Research Activity Framework

    Get PDF
    Despite growing interest in design science research in information systems, our understanding about what constitutes a design contribution and the range of research activities that can produce design contributions remains limited. We propose the design research activity (DRA) framework for classifying design contributions based on the type of statements researchers use to express knowledge contributions and the researcher role with respect to the artifact. These dimensions combine to produce a DRA framework that contains four quadrants: construction, manipulation, deployment, and elucidation. We use the framework in two ways. First, we classify design contributions that the Journal of the Association for Information Systems (JAIS) published from 2007 to 2019 and show that the journal published a broad range of design research across all four quadrants. Second, we show how one can use our framework to analyze the maturity of design-oriented knowledge in a specific field as reflected in the degree of activity across the different quadrants. The DRA framework contributes by showing that design research encompasses both design science research and design-oriented behavioral research. The framework can help authors and reviewers assess research with design implications and help researchers position and understand design research as a journey through the four quadrants

    Auto-generation of rich Internet applications from visual mock-ups

    Get PDF
    Capturing and communicating software requirements accurately and quickly is a challenging activity. This needs expertise of people with unique skills. Traditionally this challenge has been compounded by assigning specialist roles for requirements gathering and analysis, design, and implementations. These multiple roles have resulted in information loss mainly due to miscommunication between requirement specialists, designers and implementers. Large enterprises have managed the information loss by using document centric approaches, leading to delays and cost escalations. But documentation centric and multiple role approaches are not suitable for Small to Medium Enterprises (SMEs) because they are vulnerable to market competitions. Moreover, SMEs require effective online applications to provide their service. Hence the motivation for carrying out this research is to explore the possibilities of empowering requirement specialists such as Business Analysts’ (BAs) to take on additional responsibilities of designers and implementers to generate web applications. In addition, SME owners and BAs can communicate better if they perceive the application requirements using a What You See Is What You Get (WYSIWYG) approach. Hence, this research explores the design and development of mock-up-based auto-generating tool to develop SME applications. A tool that auto-generates an application from a mock-up should have the capacity to extract the essential implementation details from the mock-up. Hence a visual mock-up language was created by extending existing research on meta-models of UIs for a class of popular modern web-based business applications called Rich Internet Applications (RIAs). The popularity of RIAs is due to their distinctive client-side processing power with desktop application like responsiveness and look and feel. The mock-ups drawn with the mock-up language should have sufficient level of details to auto-generate RIAs. To support this, the mock-up language includes constructs for specifying a RIA’s mock-up in terms of layouts and the widgets within them. In addition, the language uses annotations on the mock-up to specify the behaviour of the system. In such an approach the only additional effort required of a Business Analyst is to specify the requirements in terms of a mock-up of the expected interfaces of the SME application. Apart from the mock-up language, a tool was designed and developed to auto-generate the desired application from the mock-up. The tool is powered by algorithms to derive the database structure and the client-side and server-side components required for the auto-generated application. The validation of the mock-up language and auto-generating tool was performed by BAs to demonstrate its usability. The measurement and evaluation results indicate that the mock-up language and the auto-generator can be used successfully to help BAs in the development of SME application and thereby reduce delays, errors and cost overruns. The important contributions of this research are: (i) the design of a mock-up language that makes it easy to capture the structure and behaviour of SME web applications. (ii) algorithms for automatic derivation of the expected database schema from a visual mock-up. (iii) algorithms for automatic derivation of the client and server-side application logic. (iv) application of an existing measurement and evaluation process for the usability testing of the mock-up language and the auto-generated application. This research followed the Design Science Research (DSR) method for Information System to guide the IS design and to capture the knowledge created during the design process. DSR is a research method useful in solving wicked problems requiring innovative solutions for incomplete, contradictory or changing requirements that are often difficult to recognize. This research opens new ways of thinking about web application development for future research. Specifically, mock-ups with few easy to understand annotations can be used as powerful active artifacts to capture the structure and behaviour of applications not just of small but also large enterprises. Auto-generating tools can then create fully functional and usable applications holistically from such mock-ups, thereby reducing delays and cost overruns during software engineering

    The Digital Transformation of Automotive Businesses: THREE ARTEFACTS TO SUPPORT DIGITAL SERVICE PROVISION AND INNOVATION

    Get PDF
    Digitalisation and increasing competitive pressure drive original equipment manufacturers (OEMs) to switch their focus towards the provision of digital services and open-up towards increased collaboration and customer integration. This shift implies a significant transformational change from product to product-service providers, where OEMs realign themselves within strategic, business and procedural dimensions. Thus, OEMs must manage digital transformation (DT) processes in order to stay competitive and remain adaptable to changing customer demands. However, OEMs aspiring to become participants or leaders in their domain, struggle to initiate activities as there is a lack of applicable instruments that can guide and support them during this process. Compared to the practical importance of DT, empirical studies are not comprehensive. This study proposes three artefacts, validated within case companies that intend to support automotive OEMs in digital service provisioning. Artefact one, a layered conceptual model for a digital automotive ecosystem, was developed by means of 26 expert interviews. It can serve as a useful instrument for decision makers to strategically plan and outline digital ecosystems. Artefact two is a conceptual reference framework for automotive service systems. The artefact was developed based on an extensive literature review, and the mapping of the business model canvas to the service system domain. The artefact intends to assist OEMs in the efficient conception of digital services under consideration of relevant stakeholders and the necessary infrastructures. Finally, artefact three proposes a methodology by which to transform software readiness assessment processes to fit into the agile software development approach with consideration of the existing operational infrastructure. Overall, the findings contribute to the empirical body of knowledge about the digital transformation of manufacturing industries. The results suggest value creation for digital automotive services occurs in networks among interdependent stakeholders in which customers play an integral role during the services’ life-cycle. The findings further indicate the artefacts as being useful instruments, however, success is dependent on the integration and collaboration of all contributing departments.:Table of Contents Bibliographic Description II Acknowledgment III Table of Contents IV List of Figures VI List of Tables VII List of Abbreviations VIII 1 Introduction 1 1.1 Motivation and Problem Statement 1 1.2 Objective and Research Questions 6 1.3 Research Methodology 7 1.4 Contributions 10 1.5 Outline 12 2 Background 13 2.1 From Interdependent Value Creation to Digital Ecosystems 13 2.1.1 Digitalisation Drives Collaboration 13 2.1.2 Pursuing an Ecosystem Strategy 13 2.1.3 Research Gaps and Strategy Formulation Obstacles 20 2.2 From Products to Product-Service Solutions 22 2.2.1 Digital Service Fulfilment Requires Co-Creational Networks 22 2.2.2 Enhancing Business Models with Digital Services 28 2.2.3 Research Gaps and Service Conception Obstacles 30 2.3 From Linear Development to Continuous Innovation 32 2.3.1 Digital Innovation Demands Digital Transformation 32 2.3.2 Assessing Digital Products 36 2.3.3 Research Gaps and Implementation Obstacles 38 3 Artefact 1: Digital Automotive Ecosystems 41 3.1 Meta Data 41 3.2 Summary 42 3.3 Designing a Layered Conceptual Model of a Digital Ecosystem 45 4 Artefact 2: Conceptual Reference Framework 79 4.1 Meta Data 79 4.2 Summary 80 4.3 On the Move Towards Customer-Centric Automotive Business Models 83 5 Artefact 3: Agile Software Readiness Assessment Procedures 121 5.1 Meta Data 121 5.2 Meta Data 122 5.3 Summary 123 5.4 Adding Agility to Software Readiness Assessment Procedures 126 5.5 Continuous Software Readiness Assessments for Agile Development 147 6 Conclusion and Future Work 158 6.1 Contributions 158 6.1.1 Strategic Dimension: Artefact 1 158 6.1.2 Business Dimension: Artefact 2 159 6.1.3 Process Dimension: Artefact 3 161 6.1.4 Synthesis of Contributions 163 6.2 Implications 167 6.2.1 Scientific Implications 167 6.2.2 Managerial Implications 168 6.2.3 Intelligent Parking Service Example (ParkSpotHelp) 171 6.3 Concluding Remarks 174 6.3.1 Threats to Validity 174 6.3.2 Outlook and Future Research Recommendations 174 Appendix VII Bibliography XX Wissenschaftlicher Werdegang XXXVII Selbständigkeitserklärung XXXVII
    • …
    corecore