172 research outputs found

    Progressive Probabilistic Hough Transform for line detection

    Get PDF
    We present a novel Hough Transform algorithm referred to as Progressive Probabilistic Hough Transform (PPHT). Unlike the Probabilistic HT where Standard HT is performed on a pre-selected fraction of input points, PPHT minimises the amount of computation needed to detect lines by exploiting the difference an the fraction of votes needed to detect reliably lines with different numbers of supporting points. The fraction of points used for voting need not be specified ad hoc or using a priori knowledge, as in the probabilistic HT; it is a function of the inherent complexity of the input data. The algorithm is ideally suited for real-time applications with a fixed amount of available processing time, since voting and line detection is interleaved. The most salient features are likely to be detected first. Experiments show that in many circumstances PPHT has advantages over the Standard HT

    Automatic gauge detection via geometric fitting for safety inspection

    Get PDF
    For safety considerations in electrical substations, the inspection robots are recently deployed to monitor important devices and instruments with the presence of skilled technicians in the high-voltage environments. The captured images are transmitted to a data station and are usually analyzed manually. Toward automatic analysis, a common task is to detect gauges from captured images. This paper proposes a gauge detection algorithm based on the methodology of geometric fitting. We first use the Sobel filters to extract edges which usually contain the shapes of gauges. Then, we propose to use line fitting under the framework of random sample consensus (RANSAC) to remove straight lines that do not belong to gauges. Finally, the RANSAC ellipse fitting is proposed to find most fitted ellipse from the remaining edge points. The experimental results on a real-world dataset captured by the GuoZi Robotics demonstrate that our algorithm provides more accurate gauge detection results than several existing methods

    Circle detection on images using Learning Automata

    Full text link
    Circle detection over digital images has received considerable attention from the computer vision community over the last few years devoting a tremendous amount of research seeking for an optimal detector. This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images with no consideration of conventional Hough transform principles. The proposed algorithm is based on Learning Automata (LA) which is a probabilistic optimization method that explores an unknown random environment by progressively improving the performance via a reinforcement signal (objective function). The approach uses the encoding of three non-collinear points as a candidate circle over the edge image. A reinforcement signal (matching function) indicates if such candidate circles are actually present in the edge map. Guided by the values of such reinforcement signal, the probability set of the encoded candidate circles is modified through the LA algorithm so that they can fit to the actual circles on the edge map. Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.Comment: 26 Page

    Stylizing Map Based on Examples of Representative Styling

    Get PDF
    Generally, the present disclosure is directed to stylizing a map based on one or more examples of representative styling. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict map styling rules based on one or more examples of representative styling
    • …
    corecore