1,448 research outputs found

    Generic Programming with Multiple Parameters

    Full text link

    RepLib: A library for derivable type classes

    Get PDF
    Some type class instances can be automatically derived from the structure of types. As a result, the Haskell language includes the deriving mechanism to automatic generates such instances for a small number of built-in type classes. In this paper, we present RepLib, a GHC library that enables a similar mechanism for arbitrary type classes. Users of RepLib can define the relationship between the structure of a datatype and the associated instance declaration by a normal Haskell functions that pattern-matches a representation types. Furthermore, operations defined in this manner are extensible-instances for specific types not defined by type structure may also be incorporated. Finally, this library also supports the definition of operations defined by parameterized types

    Feat: Functional Enumeration of Algebraic Types

    Get PDF
    In mathematics, an enumeration of a set S is a bijective function from (an initial segment of) the natural numbers to S. We define "functional enumerations" as efficiently computable such bijections. This paper describes a theory of functional enumeration and provides an algebra of enumerations closed under sums, products, guarded recursion and bijections. We partition each enumerated set into numbered, finite subsets. We provide a generic enumeration such that the number of each part corresponds to the size of its values (measured in the number of constructors). We implement our ideas in a Haskell library called testing-feat, and make the source code freely available. Feat provides efficient "random access" to enumerated values. The primary application is property-based testing, where it is used to define both random sampling (for example QuickCheck generators) and exhaustive enumeration (in the style of SmallCheck). We claim that functional enumeration is the best option for automatically generating test cases from large groups of mutually recursive syntax tree types. As a case study we use Feat to test the pretty-printer of the Template Haskell library (uncovering several bugs)

    Foundations for structured programming with GADTs

    Get PDF
    GADTs are at the cutting edge of functional programming and become more widely used every day. Nevertheless, the semantic foundations underlying GADTs are not well understood. In this paper we solve this problem by showing that the standard theory of data types as carriers of initial algebras of functors can be extended from algebraic and nested data types to GADTs. We then use this observation to derive an initial algebra semantics for GADTs, thus ensuring that all of the accumulated knowledge about initial algebras can be brought to bear on them. Next, we use our initial algebra semantics for GADTs to derive expressive and principled tools — analogous to the well-known and widely-used ones for algebraic and nested data types — for reasoning about, programming with, and improving the performance of programs involving, GADTs; we christen such a collection of tools for a GADT an initial algebra package. Along the way, we give a constructive demonstration that every GADT can be reduced to one which uses only the equality GADT and existential quantification. Although other such reductions exist in the literature, ours is entirely local, is independent of any particular syntactic presentation of GADTs, and can be implemented in the host language, rather than existing solely as a metatheoretical artifact. The main technical ideas underlying our approach are (i) to modify the notion of a higher-order functor so that GADTs can be seen as carriers of initial algebras of higher-order functors, and (ii) to use left Kan extensions to trade arbitrary GADTs for simpler-but-equivalent ones for which initial algebra semantics can be derive

    Type Generic Observing

    Get PDF
    Observing intermediate values helps to understand what is going on when your program runs. Gill presented an observation method for lazy functional languages that preserves the program's semantics. However, users need to define for each type how its values are observed: a laborious task and strictness of the program can easily be affected. Here we define how any value can be observed based on the structure of its type by applying generic programming frameworks. Furthermore we present an extension to specify per observation point how much to observe of a value. We discuss especially functional values and behaviour based on class membership in generic programming frameworks

    Strongly typed heterogeneous collections

    Get PDF
    A heterogeneous collection is a datatype that is capable of storing data of different types, while providing operations for look-up, update, iteration, and others. There are various kinds of heterogeneous collections, differing in representation, invariants, and access operations. We describe HList --- a Haskell library for strongly typed heterogeneous collections including extensible records. We illustrate HList's benefits in the context of type-safe database access in Haskell. The HList library relies on common extensions of Haskell 98. Our exploration raises interesting issues regarding Haskell's type system, in particular, avoidance of overlapping instances, and reification of type equality and type unificatio

    Software Extension and Integration with Type Classes

    Get PDF
    The abilities to extend a software module and to integrate a software module into an existing software system without changing existing source code are fundamental challenges in software engineering and programming-language design. We reconsider these challenges at the level of language expressiveness, by using the language concept of type classes, as it is available in the functional programming language Haskell. A detailed comparison with related work shows that type classes provide a powerful framework in which solutions to known software extension and integration problems can be provided. We also pinpoint several limitations of type classes in this context

    A principled approach to programming with nested types in Haskell

    Get PDF
    Initial algebra semantics is one of the cornerstones of the theory of modern functional programming languages. For each inductive data type, it provides a Church encoding for that type, a build combinator which constructs data of that type, a fold combinator which encapsulates structured recursion over data of that type, and a fold/build rule which optimises modular programs by eliminating from them data constructed using the buildcombinator, and immediately consumed using the foldcombinator, for that type. It has long been thought that initial algebra semantics is not expressive enough to provide a similar foundation for programming with nested types in Haskell. Specifically, the standard folds derived from initial algebra semantics have been considered too weak to capture commonly occurring patterns of recursion over data of nested types in Haskell, and no build combinators or fold/build rules have until now been defined for nested types. This paper shows that standard folds are, in fact, sufficiently expressive for programming with nested types in Haskell. It also defines buildcombinators and fold/build fusion rules for nested types. It thus shows how initial algebra semantics provides a principled, expressive, and elegant foundation for programming with nested types in Haskell
    corecore