4 research outputs found

    A nonmonotone trust-region method of conic model for unconstrained optimization

    Get PDF
    AbstractIn this paper, we present a nonmonotone trust-region method of conic model for unconstrained optimization. The new method combines a new trust-region subproblem of conic model proposed in [Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via active-set strategy, Appl. Math. Comput. 183 (2006) 217–231] with a nonmonotone technique for solving unconstrained optimization. The local and global convergence properties are proved under reasonable assumptions. Numerical experiments are conducted to compare this method with the method of [Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via active-set strategy, Appl. Math. Comput. 183 (2006) 217–231]

    Econometrics

    Get PDF
    This document contains lecture notes for a first year graduate course in econometrics, with coverage of basic topics such as OLS and hypothesis testing, through maximum likelihood and GMM, nonlinear models, time series, panel data, Bayesian methods, simulation-based methods, and other topics. The document contains numerous embedded links to example scripts and data, which illustrate the topics. The document is accompanied by a live operating system image that can be run using virtualization software on any of the popular operating systems, so that all examples can be accessed quickly and easily. The document and accompanying software are free: all sources are available under the GNU GPL.Econometrics lecture notes, open source

    A computational study of the adsorption of water and carbon dioxide at oxide surfaces

    Get PDF
    The aim of this thesis is to use computer simulation methods to consider adsorption of both water and carbon dioxide onto oxide surfaces. The materials chosen have direct relevance to current environmental concerns, alkaline earth metal oxides for carbon sequestration and uranium dioxide for the storage and stability of nuclear materials. Chapter one outlines both previous experimental and computational work relevant to these research areas. The computational methodologies used in this thesis are described in chapters two and three. Chapter two outlines how the forces between atoms in the simulation are modelled using both potential-based and electronic structure models. Chapter three details how these are then used to find lowest energy configurations. The main results of the alkaline earth metal oxides are discussed in chapters four and five. Chapter four uses multiconfigurational static lattice simulations of water and CO2 surface adsorptions to identify the most probable adsorption sites and to generate surface phase diagrams as a function of surface composition. Whereas the focus of chapter five is to model interactions in liquid water with both surface and nanoparticles. Chapters six and seven describe the results of simulations on uranium dioxide. Chapter six uses electronic structure methods to model defects and nonstoichiometry in bulk and thin film structures. Chapter seven then describes the calculations of the interactions of water with uranium dioxide surfaces, in terms of both gas phase adsorption and the mineral – water interface with results showing the favourability of surface hydroxylation on the {100} and {110} surfaces. Finally, a summary of the main findings and achievements of this thesis are given in chapter nine, along with a discussion of possible future work.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore