6,604 research outputs found

    RF-Powered Cognitive Radio Networks: Technical Challenges and Limitations

    Full text link
    The increasing demand for spectral and energy efficient communication networks has spurred a great interest in energy harvesting (EH) cognitive radio networks (CRNs). Such a revolutionary technology represents a paradigm shift in the development of wireless networks, as it can simultaneously enable the efficient use of the available spectrum and the exploitation of radio frequency (RF) energy in order to reduce the reliance on traditional energy sources. This is mainly triggered by the recent advancements in microelectronics that puts forward RF energy harvesting as a plausible technique in the near future. On the other hand, it is suggested that the operation of a network relying on harvested energy needs to be redesigned to allow the network to reliably function in the long term. To this end, the aim of this survey paper is to provide a comprehensive overview of the recent development and the challenges regarding the operation of CRNs powered by RF energy. In addition, the potential open issues that might be considered for the future research are also discussed in this paper.Comment: 8 pages, 2 figures, 1 table, Accepted in IEEE Communications Magazin

    Fast Desynchronization For Decentralized Multichannel Medium Access Control

    Get PDF
    Distributed desynchronization algorithms are key to wireless sensor networks as they allow for medium access control in a decentralized manner. In this paper, we view desynchronization primitives as iterative methods that solve optimization problems. In particular, by formalizing a well established desynchronization algorithm as a gradient descent method, we establish novel upper bounds on the number of iterations required to reach convergence. Moreover, by using Nesterov's accelerated gradient method, we propose a novel desynchronization primitive that provides for faster convergence to the steady state. Importantly, we propose a novel algorithm that leads to decentralized time-synchronous multichannel TDMA coordination by formulating this task as an optimization problem. Our simulations and experiments on a densely-connected IEEE 802.15.4-based wireless sensor network demonstrate that our scheme provides for faster convergence to the steady state, robustness to hidden nodes, higher network throughput and comparable power dissipation with respect to the recently standardized IEEE 802.15.4e-2012 time-synchronized channel hopping (TSCH) scheme.Comment: to appear in IEEE Transactions on Communication

    Spatial Performance Analysis and Design Principles for Wireless Peer Discovery

    Full text link
    In wireless peer-to-peer networks that serve various proximity-based applications, peer discovery is the key to identifying other peers with which a peer can communicate and an understanding of its performance is fundamental to the design of an efficient discovery operation. This paper analyzes the performance of wireless peer discovery through comprehensively considering the wireless channel, spatial distribution of peers, and discovery operation parameters. The average numbers of successfully discovered peers are expressed in closed forms for two widely used channel models, i.e., the interference limited Nakagami-m fading model and the Rayleigh fading model with nonzero noise, when peers are spatially distributed according to a homogeneous Poisson point process. These insightful expressions lead to the design principles for the key operation parameters including the transmission probability, required amount of wireless resources, level of modulation and coding scheme (MCS), and transmit power. Furthermore, the impact of shadowing on the spatial performance and suggested design principles is evaluated using mathematical analysis and simulations.Comment: 12 pages (double columns), 10 figures, 1 table, to appear in the IEEE Transactions on Wireless Communication

    Distributed Recursive Least-Squares: Stability and Performance Analysis

    Full text link
    The recursive least-squares (RLS) algorithm has well-documented merits for reducing complexity and storage requirements, when it comes to online estimation of stationary signals as well as for tracking slowly-varying nonstationary processes. In this paper, a distributed recursive least-squares (D-RLS) algorithm is developed for cooperative estimation using ad hoc wireless sensor networks. Distributed iterations are obtained by minimizing a separable reformulation of the exponentially-weighted least-squares cost, using the alternating-minimization algorithm. Sensors carry out reduced-complexity tasks locally, and exchange messages with one-hop neighbors to consent on the network-wide estimates adaptively. A steady-state mean-square error (MSE) performance analysis of D-RLS is conducted, by studying a stochastically-driven `averaged' system that approximates the D-RLS dynamics asymptotically in time. For sensor observations that are linearly related to the time-invariant parameter vector sought, the simplifying independence setting assumptions facilitate deriving accurate closed-form expressions for the MSE steady-state values. The problems of mean- and MSE-sense stability of D-RLS are also investigated, and easily-checkable sufficient conditions are derived under which a steady-state is attained. Without resorting to diminishing step-sizes which compromise the tracking ability of D-RLS, stability ensures that per sensor estimates hover inside a ball of finite radius centered at the true parameter vector, with high-probability, even when inter-sensor communication links are noisy. Interestingly, computer simulations demonstrate that the theoretical findings are accurate also in the pragmatic settings whereby sensors acquire temporally-correlated data.Comment: 30 pages, 4 figures, submitted to IEEE Transactions on Signal Processin

    Study of Techniques For Reliable Data Transmission In Wireless Sensor Networks

    Get PDF
    This thesis addresses the problem of traffic transfer in wireless sensor networks (WSN). In such networks, the foremost challenge in the design of data communication techniques is that the sensor's transceiver circuitry consumes the major portion of the available power. Thus, due to stringent limitations on the nodes' hardware and power resources in WSN, data transmission must be power-efficient in order to reduce the nodes' power consumption, and hence to maximize the network lifetime while satisfying the required data rate. The transmit power is itself under the influence of data rate and source-destination distance. Thanks to the dense deployment of nodes in WSN, multi-hop communication can be applied to mitigate the transmit power for sending bits of information, i.e., gathered data by the sensor nodes to the destination node (gateway) compared to single-hop scenarios. In our approach, we achieve a reasonable trade-off between power-efficiency and transmission data rate by devising cooperative communication strategies through which the network traffic (i.e. nodes' gathered information) is relayed hop-by-hop to the gateway. In such strategies, the sensor nodes serve as data originator as well as data router, and assist the data transfer from the sensors to the gateway. We develop several data transmission schemes, and we prove their capability in transmitting the data from the sensor nodes at the highest possible rates allowed by the network limitations. In particular, we consider that (i) network has linear or quasi-linear topology, (ii) nodes are equipped with half-duplex radios, implying that they cannot transmit and receive simultaneously, (iii) nodes transmit their traffic at the same average rate. We compute the average data rate corresponding to each proposed strategy. Next, we take an information-theoretic approach and derive an upper bound to the achievable rate of traffic transfer in the networks under consideration, and analyze its tightness. We show that our proposed strategies outperform the conventional multi-hop scheme, and their average achievable rate approaches the upper bound at low levels of signal to noise ratio

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing
    • ā€¦
    corecore