73 research outputs found

    Characterizing tree species in the Northwest Territories using spectral mixture analysis and multi-temporal satellite imagery

    Get PDF
    Natural resource management in northern boreal forests requires tree species identification for improved decision making. Satellite remote sensing provides a more cost-effective and time-efficient way to obtain this information in these large, remote, inaccessible areas. However, satellite signals are highly mixed due to increased tree shadows and visible understory vegetation in higher latitude, lower density open forests. Thus, methods used in southern forests are largely unsuitable. Therefore, spectral mixture analysis (SMA) was tested as it separates these signal components (trees, understory, shadow) at sub-pixel scales, allowing improved forest information. In this study, SMA was used to identify the dominant species near Fort Providence NWT using Landsat-5 Thematic Mapper imagery. An accuracy of 79 % was achieved for four species validated against 48 ground plots using multiple-date imagery acquired at different stages of the growing season. These positive results indicate SMA’s capability to retrieve species information of highly mixed open stands

    Airborne remote sensing of forest leaf area index in mountainous terrain

    Get PDF
    xiv, 151 leaves : ill. (some col.), map ; 29 cm.Leaf area index (LAI) provides forestry information that is important for regional scale ecological models and in studies of global change. This research examines the effects of mountainous terrain on the radiometric properties of multispectral CASI imagery in estimating ground-based optical measurements of LAI, obtained using the TRAC and LAI- 2000 systems. Field and image data were acquired summer 1998 in Kananaskis, Alberta, Canada. To account for the influence of terrain a new modified approach using the Li and Strahler Geometric Optical Mutual Shadowing (GOMS) model in 'multiple forward mode' (MFM) was developed. This new methodology was evaluated against four traditional radiometric corrections used in comination with spectral mixture analysis (SMA) and NDVI. The MFM approach provided the best overall predictions of LAI measured with ground-based optical instruments, followed by terrain normalized SMA, SMA without terrain normalization and NDVI

    Uncertainty in parameterizing floodplain forest friction for natural flood management, using remote sensing

    Get PDF
    One potential Natural Flood Management (NFM) option is floodplain reforestation or manage existing riparian forests, with a view to increasing flow resistance and attenuate flood hydrographs. However, the effectiveness of floodplain forests as resistance agents, during different magnitude overbank floods, has yet to be appropriately parameterized for hydraulic models. Remote sensing offers high-resolution datasets capable of characterizing vegetation structure from a variety of platforms, but they contain uncertainty. For the first time, we demonstrate uncertainty propagation in remote sensing derivations of complex vegetation structure through roughness prediction and floodplain flow for extreme flows and different forest types (young and old Poplar plantations, young and old Pine plantations, and an unmanaged riparian forest). The lowest uncertainties resulted from terrestrial and airborne lidar, where airborne lidar is currently best at defining canopy leaf area, but more research is needed to determine wood area. Mean literature uncertainties in stem density, trunk diameter, wood, and leaf area indices (20, 10, 30, 20%, respectively) resulted in a combined Manning’s n uncertainty from 11–13% to 11–17% at 2 m to 8 m flow depths. This equates to 7–8% roughness uncertainty per 10% combined forest structure uncertainty. Individually, stem density and trunk diameter uncertainties resulted in the largest Manning’s n uncertainty at all flow depths, especially for flow though Pine plantations. For deeper flows, leaf and woody areas become much more important, especially for unmanaged riparian forests with low canopy morphology. Forest structure errors propagated to flow depth demonstrate that even small flows can change by a decimeter, while deeper flows can change by 40 cm or more. For flow depth, errors in canopy structure are deemed more severe in flows depths beyond 4–6 m. This study highlights the need for lower uncertainty in all forest structure components using remote sensing, to improve roughness parameterization and flood modeling for NFM

    Canopy reflectance modeling of forest stand volume

    Get PDF
    xiii, 143 leaves : ill. (some col.) ; 29 cm.Three-dimensional canopy relectance models provide a physical-structural basis to satellite image analysis, representing a potentially more robust, objective and accurate approach for obtaining forest cover type and structural information with minimal ground truth data. The Geometric Optical Mutual Shadowing (GOMS) canopy relectance model was run in multiple-forward-mode (MFM) using digital multispectral IKONOS satellite imagery to estimate tree height and stand volume over 100m2 homogeneous forest plots in mountainous terrain, Kananaskis, Alberta. Height was computed within 2.7m for trembling aspen and 1.8m fr lodgepole pine, with basal area estimated within 0.05m2. Stand volume, estimated as the product of mean tree height and basal area, had an absolute mean difference from field measurements of 0.85m3/100m2 and 0.61m3/100m2 for aspen and pine, respectively

    Estimating the crop leaf area index using hyperspectral remote sensing

    Get PDF
    AbstractThe leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications. Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies. During the last two decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique technical procedures compared with conventional multispectral data, such as denoising and dimension reduction. Thus, we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques. First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation. Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions. We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the characteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical models, and inversion strategies for physical models). Thus, numerous models and inversion strategies are organized in a clear conceptual framework. Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such as the “curse of dimensionality” and the ill-posed problem. Finally, we discuss the prospects for future research based on the previous studies described in this review

    Sensitivity of ecosystem net primary productivity models to remotely sensed leaf area index in a montane forest environment

    Get PDF
    xii, 181 leaves : ill. ; 28 cm.Net primary productivity (NPP) is a key ecological parameter that is important in estimating carbon stocks in large forested areas. NPP is estimated using models of which leaf area index (LAI) is a key input. This research computes a variety of ground-based and remote sensing LAI estimation approaches and examines the impact of these estimates on modeled NPP. A relative comparison of ground-based LAI estimates from optical and allometric techniques showed that the integrated LAI-2000 and TRAC method was preferred. Spectral mixture analysis (SMA), accounting for subpixel influences on reflectance, outperformed vegetation indices in LAI prediction from remote sensing. LAI was shown to be the most important variable in modeled NPP in the Kananaskis, Alberta region compared to soil water content (SWC) and climate inputs. The variability in LAI and NPP estimates were not proportional, from which a threshold was suggested where first LAI is limiting than water availability

    Characterizing Dryland Ecosystems Using Remote Sensing and Dynamic Global Vegetation Modeling

    Get PDF
    Drylands include all terrestrial regions where the production of crops, forage, wood and other ecosystem services are limited by water. These ecosystems cover approximately 40% of the earth terrestrial surface and accommodate more than 2 billion people (Millennium Ecosystem Assessment, 2005). Moreover, the interannual variability of the global carbon budget is strongly regulated by vegetation dynamics in drylands. Understanding the dynamics of such ecosystems is significant for assessing the potential for and impacts of natural or anthropogenic disturbances and mitigation planning, and a necessary step toward enhancing the economic and social well-being of dryland communities in a sustainable manner (Global Drylands: A UN system-wide response, 2011). In this research, a combination of remote sensing, field data collection, and ecosystem modeling were used to establish an integrated framework for semi-arid ecosystems dynamics monitoring. Foliar nitrogen (N) plays an important role in vegetation processes such as photosynthesis and there is wide interest in retrieving this variable from hyperspectral remote sensing data. In this study, I used the theory of canopy spectral invariants (AKA p-theory) to understand the role of canopy structure and soil in the retrieval of foliar N from hyperspectral data and machine learning techniques. The results of this study showed the inconsistencies among different machine learning techniques used for estimating N. Using p-theory, I demonstrated that soil can contribute up to 95% to the total radiation budget of the canopy. I suggested an alternative approach to study photosynthesis is the use of dynamic global vegetation models (DGVMs). Gross primary production (GPP) is the apparent ecosystem scale photosynthesis that can be estimated using DGVMs. In this study, I performed a thorough sensitivity analysis and calibrated the Ecosystem Demography (EDv2.2) model along an elevation gradient in a dryland study area. I investigated the GPP capacity and activity by comparing the EDv2.2 GPP with flux towers and remote sensing products. The overall results showed that EDv2.2 performed well in capturing GPP capacity and its long term trend at lower elevation sites within the study area; whereas the model performed worse at higher elevations likely due to the change in vegetation community. I discussed that adding more heterogeneity and modifying ecosystem processes such as phenology and plant hydraulics in ED.v2.2 will improve its application to higher elevation ecosystems where there is more vegetation production. And finally, I developed an integrated hyperspectral-lidar framework for regional mapping of xeric and mesic vegetation in the study area. I showed that by considering spectral shape and magnitude, canopy structure and landscape features (riparian zone), we can develop a straightforward algorithm for vegetation mapping in drylands. This framework is simple, easy to interpret and consistent with our ecological understanding of vegetation distribution in drylands over large areas. Collectively, the results I present in this dissertation demonstrate the potential for advanced remote sensing and modeling to help us better understand ecosystem processes in drylands

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin
    corecore