22 research outputs found

    Detecting Malicious Software By Dynamicexecution

    Get PDF
    Traditional way to detect malicious software is based on signature matching. However, signature matching only detects known malicious software. In order to detect unknown malicious software, it is necessary to analyze the software for its impact on the system when the software is executed. In one approach, the software code can be statically analyzed for any malicious patterns. Another approach is to execute the program and determine the nature of the program dynamically. Since the execution of malicious code may have negative impact on the system, the code must be executed in a controlled environment. For that purpose, we have developed a sandbox to protect the system. Potential malicious behavior is intercepted by hooking Win32 system calls. Using the developed sandbox, we detect unknown virus using dynamic instruction sequences mining techniques. By collecting runtime instruction sequences in basic blocks, we extract instruction sequence patterns based on instruction associations. We build classification models with these patterns. By applying this classification model, we predict the nature of an unknown program. We compare our approach with several other approaches such as simple heuristics, NGram and static instruction sequences. We have also developed a method to identify a family of malicious software utilizing the system call trace. We construct a structural system call diagram from captured dynamic system call traces. We generate smart system call signature using profile hidden Markov model (PHMM) based on modularized system call block. Smart system call signature weakly identifies a family of malicious software

    Preliminary proceedings of the 2001 ACM SIGPLAN Haskell workshop

    Get PDF
    This volume contains the preliminary proceedings of the 2001 ACM SIGPLAN Haskell Workshop, which was held on 2nd September 2001 in Firenze, Italy. The final proceedings will published by Elsevier Science as an issue of Electronic Notes in Theoretical Computer Science (Volume 59). The HaskellWorkshop was sponsored by ACM SIGPLAN and formed part of the PLI 2001 colloquium on Principles, Logics, and Implementations of high-level programming languages, which comprised the ICFP/PPDP conferences and associated workshops. Previous Haskell Workshops have been held in La Jolla (1995), Amsterdam (1997), Paris (1999), and Montr´eal (2000). The purpose of the Haskell Workshop was to discuss experience with Haskell, and possible future developments for the language. The scope of the workshop included all aspects of the design, semantics, theory, application, implementation, and teaching of Haskell. Submissions that discussed limitations of Haskell at present and/or proposed new ideas for future versions of Haskell were particularly encouraged. Adopting an idea from ICFP 2000, the workshop also solicited two special classes of submissions, application letters and functional pearls, described below

    Synthesizing stream control

    Get PDF
    For the management of reactive systems, controllers must coordinate time, data streams, and data transformations, all joint by the high level perspective of their control flow. This control flow is required to drive the system correctly and continuously, which turns the development into a challenge. The process is error-prone, time consuming, unintuitive, and costly. An attractive alternative is to synthesize the system instead, where the developer only needs to specify the desired behavior. The synthesis engine then automatically takes care of all the technical details. However, while current algorithms for the synthesis of reactive systems are well-suited to handle control, they fail on complex data transformations due to the complexity of the comparably large data space. Thus, to overcome the challenge of explicitly handling the data we must separate data and control. We introduce Temporal Stream Logic (TSL), a logic which exclusively argues about the control of the controller, while treating data and functional transformations as interchangeable black-boxes. In TSL it is possible to specify control flow properties independently of the complexity of the handled data. Furthermore, with TSL at hand a synthesis engine can check for realizability, even without a concrete implementation of the data transformations. We present a modular development framework that first uses synthesis to identify the high level control flow of a program. If successful, the created control flow then is extended with concrete data transformations in order to be compiled into a final executable. Our results also show that the current synthesis approaches cannot replace existing manual development work flows immediately. During the development of a reactive system, the developer still may use incomplete or faulty specifications at first, that need the be refined after a subsequent inspection. In the worst case, constraints are contradictory or miss important assumptions, which leads to unrealizable specifications. In both scenarios, the developer needs additional feedback from the synthesis engine to debug errors for finally improving the system specification. To this end, we explore two further possible improvements. On the one hand, we consider output sensitive synthesis metrics, which allow to synthesize simple and well structured solutions that help the developer to understand and verify the underlying behavior quickly. On the other hand, we consider the extension of delay, whose requirement is a frequent reason for unrealizability. With both methods at hand, we resolve the aforementioned problems and therefore help the developer in the development phase with the effective creation of a safe and correct reactive system.Um reaktive Systeme zu regeln müssen Steuergeräte Zeit, Datenströme und Datentransformationen koordinieren, die durch den übergeordneten Kontrollfluss zusammengefasst werden. Die Aufgabe des Kontrollflusses ist es das System korrekt und dauerhaft zu betreiben. Die Entwicklung solcher Systeme wird dadurch zu einer Herausforderung, denn der Prozess ist fehleranfällig, zeitraubend, unintuitiv und kostspielig. Eine attraktive Alternative ist es stattdessen das System zu synthetisieren, wobei der Entwickler nur das gewünschte Verhalten des Systems festlegt. Der Syntheseapparat kümmert sich dann automatisch um alle technischen Details. Während aktuelle Algorithmen für die Synthese von reaktiven Systemen erfolgreich mit dem Kontrollanteil umgehen können, versagen sie jedoch, sobald komplexe Datentransformationen hinzukommen, aufgrund der Komplexität des vergleichsweise großen Datenraums. Daten und Kontrolle müssen demnach getrennt behandelt werden, um auch große Datenräumen effizient handhaben zu können. Wir präsentieren Temporal Stream Logic (TSL), eine Logik die ausschließlich die Kontrolle einer Steuerung betrachtet, wohingegen Daten und funktionale Datentransformationen als austauschbare Blackboxen gehandhabt werden. In TSL ist es möglich Kontrollflusseigenschaften unabhängig von der Komplexität der zugrunde liegenden Daten zu beschreiben. Des Weiteren kann ein auf TSL beruhender Syntheseapparat die Realisierbarkeit einer Spezifikation prüfen, selbst ohne die konkreten Implementierungen der Datentransformationen zu kennen. Wir präsentieren ein modulares Grundgerüst für die Entwicklung. Es verwendet zunächst den Syntheseapparat um den übergeordneten Kontrollfluss zu erzeugen. Ist dies erfolgreich, so wird der resultierende Kontrollfluss um die konkreten Implementierungen der Datentransformationen erweitert und anschließend zu einer ausführbare Anwendung kompiliert. Wir zeigen auch auf, dass bisherige Syntheseverfahren bereits existierende manuelle Entwicklungsprozesse noch nicht instantan ersetzen können. Im Verlauf der Entwicklung ist es auch weiterhin möglich, dass der Entwickler zunächst unvollständige oder fehlerhafte Spezifikationen erstellt, welche dann erst nach genauerer Betrachtung des synthetisierten Systems weiter verbessert werden können. Im schlimmsten Fall sind Anforderungen inkonsistent oder wichtige Annahmen über das Verhalten fehlen, was zu unrealisierbaren Spezifikationen führt. In beiden Fällen benötigt der Entwickler zusätzliche Rückmeldungen vom Syntheseapparat, um Fehler zu identifizieren und die Spezifikation schlussendlich zu verbessern. In diesem Zusammenhang untersuchen wir zwei mögliche Erweiterungen. Zum einen betrachten wir ausgabeabhängige Metriken, die es dem Entwickler erlauben einfache und wohlstrukturierte Lösungen zu synthetisieren die verständlich sind und deren Verhalten einfach zu verifizieren ist. Zum anderen betrachten wir die Erweiterung um Verzögerungen, welche eine der Hauptursachen für Unrealisierbarkeit darstellen. Mit beiden Methoden beheben wir die jeweils zuvor genannten Probleme und helfen damit dem Entwickler während der Entwicklungsphase auch wirklich das reaktive System zu kreieren, dass er sich auch tatsächlich vorstellt

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore