4,788 research outputs found

    Characteristic polynomials of random matrices at edge singularities

    Full text link
    We have discussed earlier the correlation functions of the random variables \det(\la-X) in which XX is a random matrix. In particular the moments of the distribution of these random variables are universal functions, when measured in the appropriate units of the level spacing. When the \la's, instead of belonging to the bulk of the spectrum, approach the edge, a cross-over takes place to an Airy or to a Bessel problem, and we consider here these modified classes of universality. Furthermore, when an external matrix source is added to the probability distribution of XX, various new phenomenons may occur and one can tune the spectrum of this source matrix to new critical points. Again there are remarkably simple formulae for arbitrary source matrices, which allow us to compute the moments of the characteristic polynomials in these cases as well.Comment: 22 pages, late

    Nonparametric estimation of the mixing density using polynomials

    Full text link
    We consider the problem of estimating the mixing density ff from nn i.i.d. observations distributed according to a mixture density with unknown mixing distribution. In contrast with finite mixtures models, here the distribution of the hidden variable is not bounded to a finite set but is spread out over a given interval. We propose an approach to construct an orthogonal series estimator of the mixing density ff involving Legendre polynomials. The construction of the orthonormal sequence varies from one mixture model to another. Minimax upper and lower bounds of the mean integrated squared error are provided which apply in various contexts. In the specific case of exponential mixtures, it is shown that the estimator is adaptive over a collection of specific smoothness classes, more precisely, there exists a constant A\textgreater{}0 such that, when the order mm of the projection estimator verifies mAlog(n)m\sim A \log(n), the estimator achieves the minimax rate over this collection. Other cases are investigated such as Gamma shape mixtures and scale mixtures of compactly supported densities including Beta mixtures. Finally, a consistent estimator of the support of the mixing density ff is provided

    Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles: Announcement of Results

    Full text link
    We compute the pointwise asymptotics of orthogonal polynomials with respect to a general class of pure point measures supported on finite sets as both the number of nodes of the measure and also the degree of the orthogonal polynomials become large. The class of orthogonal polynomials we consider includes as special cases the Krawtchouk and Hahn classical discrete orthogonal polynomials, but is far more general. In particular, we consider nodes that are not necessarily equally spaced. The asymptotic results are given with error bound for all points in the complex plane except for a finite union of discs of arbitrarily small but fixed radii. These exceptional discs are the neighborhoods of the so-called band edges of the associated equilibrium measure. As applications, we prove universality results for correlation functions of a general class of discrete orthogonal polynomial ensembles, and in particular we deduce asymptotic formulae with error bound for certain statistics relevant in the random tiling of a hexagon with rhombus-shaped tiles. The discrete orthogonal polynomials are characterized in terms of a a Riemann-Hilbert problem formulated for a meromorphic matrix with certain pole conditions. By extending the methods of [17, 22], we suggest a general and unifying approach to handle Riemann-Hilbert problems in the situation when poles of the unknown matrix are accumulating on some set in the asymptotic limit of interest.Comment: 28 pages, 7 figure

    Option Pricing with Orthogonal Polynomial Expansions

    Full text link
    We derive analytic series representations for European option prices in polynomial stochastic volatility models. This includes the Jacobi, Heston, Stein-Stein, and Hull-White models, for which we provide numerical case studies. We find that our polynomial option price series expansion performs as efficiently and accurately as the Fourier transform based method in the nested affine cases. We also derive and numerically validate series representations for option Greeks. We depict an extension of our approach to exotic options whose payoffs depend on a finite number of prices.Comment: forthcoming in Mathematical Finance, 38 pages, 3 tables, 7 figure

    Stein's method for comparison of univariate distributions

    Get PDF
    We propose a new general version of Stein's method for univariate distributions. In particular we propose a canonical definition of the Stein operator of a probability distribution {which is based on a linear difference or differential-type operator}. The resulting Stein identity highlights the unifying theme behind the literature on Stein's method (both for continuous and discrete distributions). Viewing the Stein operator as an operator acting on pairs of functions, we provide an extensive toolkit for distributional comparisons. Several abstract approximation theorems are provided. Our approach is illustrated for comparison of several pairs of distributions : normal vs normal, sums of independent Rademacher vs normal, normal vs Student, and maximum of random variables vs exponential, Frechet and Gumbel.Comment: 41 page

    Sequential Quantiles via Hermite Series Density Estimation

    Full text link
    Sequential quantile estimation refers to incorporating observations into quantile estimates in an incremental fashion thus furnishing an online estimate of one or more quantiles at any given point in time. Sequential quantile estimation is also known as online quantile estimation. This area is relevant to the analysis of data streams and to the one-pass analysis of massive data sets. Applications include network traffic and latency analysis, real time fraud detection and high frequency trading. We introduce new techniques for online quantile estimation based on Hermite series estimators in the settings of static quantile estimation and dynamic quantile estimation. In the static quantile estimation setting we apply the existing Gauss-Hermite expansion in a novel manner. In particular, we exploit the fact that Gauss-Hermite coefficients can be updated in a sequential manner. To treat dynamic quantile estimation we introduce a novel expansion with an exponentially weighted estimator for the Gauss-Hermite coefficients which we term the Exponentially Weighted Gauss-Hermite (EWGH) expansion. These algorithms go beyond existing sequential quantile estimation algorithms in that they allow arbitrary quantiles (as opposed to pre-specified quantiles) to be estimated at any point in time. In doing so we provide a solution to online distribution function and online quantile function estimation on data streams. In particular we derive an analytical expression for the CDF and prove consistency results for the CDF under certain conditions. In addition we analyse the associated quantile estimator. Simulation studies and tests on real data reveal the Gauss-Hermite based algorithms to be competitive with a leading existing algorithm.Comment: 43 pages, 9 figures. Improved version incorporating referee comments, as appears in Electronic Journal of Statistic
    corecore