15,696 research outputs found

    Computational morphogenesis of free form shells: Filter methods to create alternative solutions

    Full text link
    p. 536-547Actual trends in numerical shape optimal design of structures deal with handling of very large dimensions of design space. The goal is to allowing as much design freedom as possible while considerably reducing the modelling effort. As a consequence, several technical problems have to be solved to get procedures which are robust, easy to use and which can handle many design parameters efficiently. The paper briefly discusses several of the most important aspects in this context and presents many illustrative examples which show typical applications for the design of light weight shell and membrane structures.Bletzinger, K.; Firi, M.; Linhard, J.; Wüchner, R. (2009). Computational morphogenesis of free form shells: Filter methods to create alternative solutions. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/654

    Fast iterative solution of reaction-diffusion control problems arising from chemical processes

    Get PDF
    PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves result from chemical processes. Important aspects in our solvers are saddle point theory, mass matrix representation and effective Schur complement approximation, as well as the outer (Newton) iteration to take account of the nonlinearity of the underlying PDEs

    Worst-Case Value-at-Risk of Non-Linear Portfolios

    Get PDF
    Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally intractable and require complete information about the return distribution of the portfolio constituents, which is rarely available in practice. These difficulties are further compounded when the portfolio contains derivatives. We develop two tractable conservative approximations for the VaR of a derivative portfolio by evaluating the worst-case VaR over all return distributions of the derivative underliers with given first- and second-order moments. The derivative returns are modelled as convex piecewise linear or - by using a delta-gamma approximation - as (possibly non-convex) quadratic functions of the returns of the derivative underliers. These models lead to new Worst-Case Polyhedral VaR (WCPVaR) and Worst-Case Quadratic VaR (WCQVaR) approximations, respectively. WCPVaR is a suitable VaR approximation for portfolios containing long positions in European options expiring at the end of the investment horizon, whereas WCQVaR is suitable for portfolios containing long and/or short positions in European and/or exotic options expiring beyond the investment horizon. We prove that WCPVaR and WCQVaR optimization can be formulated as tractable second-order cone and semidefinite programs, respectively, and reveal interesting connections to robust portfolio optimization. Numerical experiments demonstrate the benefits of incorporating non-linear relationships between the asset returns into a worst-case VaR model.Value-at-Risk, Derivatives, Robust Optimization, Second-Order Cone Programming, Semidefinite Programming
    • …
    corecore