322 research outputs found

    Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation

    Get PDF
    This work provides novel robust and regularized algorithms for parameter estimation with applications in vehicle tractive force prediction and mass estimation. Given a large record of real world data from test runs on public roads, recursive algorithms adjusted the unknown vehicle parameters under a broad variation of statistical assumptions for two linear gray-box models

    Robust state estimation methods for robotics applications

    Get PDF
    State estimation is an integral component of any autonomous robotic system. Finding the correct position, velocity, and orientation of an agent in its environment enables it to do other tasks like mapping and interacting with the environment, and collaborating with other agents. State estimation is achieved by using data obtained from multiple sensors and fusing them in a probabilistic framework. These include inertial data from Inertial Measurement Unit (IMU), images from camera, range data from lidars, and positioning data from Global Navigation Satellite Systems (GNSS) receivers. The main challenge faced in sensor-based state estimation is the presence of noisy, erroneous, and even lack of informative data. Some common examples of such situations include wrong feature matching between images or point clouds, false loop-closures due to perceptual aliasing (different places that look similar can confuse the robot), presence of dynamic objects in the environment (odometry algorithms assume a static environment), multipath errors for GNSS (signals for satellites jumping off tall structures like buildings before reaching receivers) and more. This work studies existing and new ways of how standard estimation algorithms like the Kalman filter and factor graphs can be made robust to such adverse conditions without losing performance in ideal outlier-free conditions. The first part of this work demonstrates the importance of robust Kalman filters on wheel-inertial odometry for high-slip terrain. Next, inertial data is integrated into GNSS factor graphs to improve the accuracy and robustness of GNSS factor graphs. Lastly, a combined framework for improving the robustness of non-linear least squares and estimating the inlier noise threshold is proposed and tested with point cloud registration and lidar-inertial odometry algorithms followed by an algorithmic analysis of optimizing generalized robust cost functions with factor graphs for GNSS positioning problem

    Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation

    Get PDF
    A crucial limitation of current high-resolution 3D photoacoustic tomography (PAT) devices that employ sequential scanning is their long acquisition time. In previous work, we demonstrated how to use compressed sensing techniques to improve upon this: images with good spatial resolution and contrast can be obtained from suitably sub-sampled PAT data acquired by novel acoustic scanning systems if sparsity-constrained image reconstruction techniques such as total variation regularization are used. Now, we show how a further increase of image quality can be achieved for imaging dynamic processes in living tissue (4D PAT). The key idea is to exploit the additional temporal redundancy of the data by coupling the previously used spatial image reconstruction models with sparsity-constrained motion estimation models. While simulated data from a two-dimensional numerical phantom will be used to illustrate the main properties of this recently developed joint-image-reconstruction-and-motion-estimation framework, measured data from a dynamic experimental phantom will also be used to demonstrate their potential for challenging, large-scale, real-world, three-dimensional scenarios. The latter only becomes feasible if a carefully designed combination of tailored optimization schemes is employed, which we describe and examine in more detail

    Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

    Get PDF
    By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems

    Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation

    Get PDF
    This dissertation provides novel robust and regularized algorithms from linear system identification for parameter estimation with applications in vehicle tractive force prediction and mass estimation

    Bounded Influence Approaches to Constrained Mixed Vector Autoregressive Models

    Get PDF
    The proliferation of many clinical studies obtaining multiple biophysical signals from several individuals repeatedly in time is increasingly recognized, a recognition generating growth in statistical models that analyze cross-sectional time series data. In general, these statistical models try to answer two questions: (i) intra-individual dynamics of the response and its relation to some covariates; and, (ii) how this dynamics can be aggregated consistently in a group. In response to the first question, we propose a covariate-adjusted constrained Vector Autoregressive model, a technique similar to the STARMAX model (Stoffer, JASA 81, 762-772), to describe serial dependence of observations. In this way, the number of parameters to be estimated is kept minimal while offering flexibility for the model to explore higher order dependence. In response to (ii), we use mixed effects analysis that accommodates modelling of heterogeneity among cross-sections arising from covariate effects that vary from one cross-section to another. Although estimation of the model can proceed using standard maximum likelihood techniques, we believed it is advantageous to use bounded influence procedures in the modelling (such as choosing constraints) and parameter estimation so that the effects of outliers can be controlled. In particular, we use M-estimation with a redescending bounding function because its influence function is always bounded. Furthermore, assuming consistency, this influence function is useful to obtain the limiting distribution of the estimates. However, this distribution may not necessarily yield accurate inference in the presence of contamination as the actual asymptotic distribution might have wider tails. This led us to investigate bootstrap approximation techniques. A sampling scheme based on IID innovations is modified to accommodate the cross-sectional structure of the data. Then the M-estimation is applied to each bootstrap sample naively to obtain the asymptotic distribution of the estimates.We apply these strategies to the extracted BOLD activation from several regions of the brain from a group of individuals to describe joint dynamic behavior between these locations. We used simulated data with both innovation and additive outliers to test whether the estimation procedure is accurate despite contamination
    • …
    corecore