17 research outputs found

    Proof Theory at Work: Complexity Analysis of Term Rewrite Systems

    Full text link
    This thesis is concerned with investigations into the "complexity of term rewriting systems". Moreover the majority of the presented work deals with the "automation" of such a complexity analysis. The aim of this introduction is to present the main ideas in an easily accessible fashion to make the result presented accessible to the general public. Necessarily some technical points are stated in an over-simplified way.Comment: Cumulative Habilitation Thesis, submitted to the University of Innsbruc

    The Derivational Complexity Induced by the Dependency Pair Method

    Full text link
    We study the derivational complexity induced by the dependency pair method, enhanced with standard refinements. We obtain upper bounds on the derivational complexity induced by the dependency pair method in terms of the derivational complexity of the base techniques employed. In particular we show that the derivational complexity induced by the dependency pair method based on some direct technique, possibly refined by argument filtering, the usable rules criterion, or dependency graphs, is primitive recursive in the derivational complexity induced by the direct method. This implies that the derivational complexity induced by a standard application of the dependency pair method based on traditional termination orders like KBO, LPO, and MPO is exactly the same as if those orders were applied as the only termination technique

    Polynomial Path Orders: A Maximal Model

    Full text link
    This paper is concerned with the automated complexity analysis of term rewrite systems (TRSs for short) and the ramification of these in implicit computational complexity theory (ICC for short). We introduce a novel path order with multiset status, the polynomial path order POP*. Essentially relying on the principle of predicative recursion as proposed by Bellantoni and Cook, its distinct feature is the tight control of resources on compatible TRSs: The (innermost) runtime complexity of compatible TRSs is polynomially bounded. We have implemented the technique, as underpinned by our experimental evidence our approach to the automated runtime complexity analysis is not only feasible, but compared to existing methods incredibly fast. As an application in the context of ICC we provide an order-theoretic characterisation of the polytime computable functions. To be precise, the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    The Hydra Battle and Cichon’s Principle

    Get PDF
    Abstract In rewriting the Hydra battle refers to a term rewrite system H proposed by Dershowitz and Jouannaud. To date, H withstands any attempt to prove its termination automatically. This motivates our interest in term rewrite systems encoding the Hydra battle, as a careful study of such systems may prove useful in the design of automatic termination tools. Moreover it has been an open problem, whether any termination order compatible with H has to have the Howard-Bachmann ordinal as its order type, i.e., the proof theoretic ordinal of the theory of one inductive denition. We answer this question in the negative, by providing a reduction order compatible with H, whose order type is at most 0 , the proof theoretic ordinal of Peano arithmetic

    Tuple Interpretations for Higher-Order Complexity

    Get PDF
    We develop a class of algebraic interpretations for many-sorted and higher-order term rewriting systems that takes type information into account. Specifically, base-type terms are mapped to tuples of natural numbers and higher-order terms to functions between those tuples. Tuples may carry information relevant to the type; for instance, a term of type nat may be associated to a pair ? cost, size ? representing its evaluation cost and size. This class of interpretations results in a more fine-grained notion of complexity than runtime or derivational complexity, which makes it particularly useful to obtain complexity bounds for higher-order rewriting systems. We show that rewriting systems compatible with tuple interpretations admit finite bounds on derivation height. Furthermore, we demonstrate how to mechanically construct tuple interpretations and how to orient ? and ? reductions within our technique. Finally, we relate our method to runtime complexity and prove that specific interpretation shapes imply certain runtime complexity bounds

    Simplification orders in term rewriting

    Full text link
    Thema der Arbeit ist die Anwendung von Methoden der Beweistheorie auf Termersetzungssysteme, deren Termination mittels einer Simplifikationsordnung beweisbar ist. Es werden optimale Schranken fĂŒr HerleitungslĂ€ngen im allgemeinen Fall und im Fall der Termination mittels einer Knuth-Bendix-Ordnung (KBO) angegeben. Zudem werden die Ordnungstypen von KBOs vollstĂ€ndig klassifiziert und die unter KBO berechenbaren Funktionen vorgestellt. Einen weiteren Schwerpunkt bildet die Untersuchung der Löngen von Reduktionsketten, die bei einfach terminierenden Termersetzungssysteme auftreten und bestimmten Wachstumsbedingungen genĂŒgen

    Hydra Battles and AC Termination

    Get PDF
    We present a new encoding of the Battle of Hercules and Hydra as a rewrite system with AC symbols. Unlike earlier term rewriting encodings, it faithfully models any strategy of Hercules to beat Hydra. To prove the termination of our encoding, we employ type introduction in connection with many-sorted semantic labeling for AC rewriting and AC-RPO
    corecore