358 research outputs found

    Temporal stability of soil moisture and radar backscatter observed by the advanced Synthetic Aperture Radar (ASAR)

    Get PDF
    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R-2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments

    Use of microwave remote sensing data to monitor spatio temporal characteristics of surface soil moisture at local and regional scales

    Get PDF
    Hydrologic processes, such as runoff production or evapotranspiration, largely depend on the variation of soil moisture and its spatial pattern. The interaction of electromagnetic waves with the land surface can be dependant on the water content of the uppermost soil layer. Especially in the microwave domain of the electromagnetic spectrum, this is the case. New sensors as e.g. ENVISAT ASAR, allow for frequent, synoptically and homogeneous image acquisitions over larger areas. Parameter inversion models are therefore developed to derive bio- and geophysical parameters from the image products. The paper presents a soil moisture inversion model for ENVISAT ASAR data for local and regional scale applications. The model is validated against in situ soil moisture measurements. The various sources of uncertainties, being related to the inversion process are assessed and quantified

    Evaluation of a global soil moisture product from finer spatial resolution sar data and ground measurements at Irish sites

    Get PDF
    In the framework of the European Space Agency Climate Change Initiative, a global, almost daily, soil moisture (SM) product is being developed from passive and active satellite microwave sensors, at a coarse spatial resolution. This study contributes to its validation by using finer spatial resolution ASAR Wide Swath and in situ soil moisture data taken over three sites in Ireland, from 2007 to 2009. This is the first time a comparison has been carried out between three sets of independent observations from different sensors at very different spatial resolutions for such a long time series. Furthermore, the SM spatial distribution has been investigated at the ASAR scale within each Essential Climate Variable (ECV) pixel, without adopting any particular model or using a densely distributed network of in situ stations. This approach facilitated an understanding of the extent to which geophysical factors, such as soil texture, terrain composition and altitude, affect the retrieved ECV SM product values in temperate grasslands. Temporal and spatial variability analysis provided high levels of correlation (p < 0.025) and low errors between the three datasets, leading to confidence in the new ECV SM global product, despite limitations in its ability to track the driest and wettest conditions

    Coupled modelling of land surface microwave interactions using ENVISAT ASAR data

    Get PDF
    In the last decades microwave remote sensing has proven its capability to provide valuable information about the land surface. New sensor generations as e.g. ENVISAT ASAR are capable to provide frequent imagery with an high information content. To make use of these multiple imaging capabilities, sophisticated parameter inversion and assimilation strategies have to be applied. A profound understanding of the microwave interactions at the land surface is therefore essential. The objective of the presented work is the analysis and quantitative description of the backscattering processes of vegetated areas by means of microwave backscattering models. The effect of changing imaging geometries is investigated and models for the description of bare soil and vegetation backscattering are developed. Spatially distributed model parameterisation is realized by synergistic coupling of the microwave scattering models with a physically based land surface process model. This enables the simulation of realistic SAR images, based on bioand geophysical parameters. The adequate preprocessing of the datasets is crucial for quantitative image analysis. A stringent preprocessing and sophisticated terrain geocoding and correction procedure is therefore suggested. It corrects the geometric and radiometric distortions of the image products and is taken as the basis for further analysis steps. A problem in recently available microwave backscattering models is the inadequate parameterisation of the surface roughness. It is shown, that the use of classical roughness descriptors, as the rms height and autocorrelation length, will lead to ambiguous model parameterisations. A new two parameter bare soil backscattering model is therefore recommended to overcome this drawback. It is derived from theoretical electromagnetic model simulations. The new bare soil surface scattering model allows for the accurate description of the bare soil backscattering coefficients. A new surface roughness parameter is introduced in this context, capable to describe the surface roughness components, affecting the backscattering coefficient. It is shown, that this parameter can be directly related to the intrinsic fractal properties of the surface. Spatially distributed information about the surface roughness is needed to derive land surface parameters from SAR imagery. An algorithm for the derivation of the new surface roughness parameter is therefore suggested. It is shown, that it can be derived directly from multitemporal SAR imagery. Starting from that point, the bare soil backscattering model is used to assess the vegetation influence on the signal. By comparison of the residuals between measured backscattering coefficients and those predicted by the bare soil backscattering model, the vegetation influence on the signal can be quantified. Significant difference between cereals (wheat and triticale) and maize is observed in this context. It is shown, that the vegetation influence on the signal can be directly derived from alternating polarisation data for cereal fields. It is dependant on plant biophysical variables as vegetation biomass and water content. The backscattering behaviour of a maize stand is significantly different from that of other cereals, due to its completely different density and shape of the plants. A dihedral corner reflection between the soil and the stalk is identified as the major source of backscattering from the vegetation. A semiempirical maize backscattering model is suggested to quantify the influences of the canopy over the vegetation period. Thus, the different scattering contributions of the soil and vegetation components are successfully separated. The combination of the bare soil and vegetation backscattering models allows for the accurate prediction of the backscattering coefficient for a wide range of surface conditions and variable incidence angles. To enable the spatially distributed simulation of the SAR backscattering coefficient, an interface to a process oriented land surface model is established, which provides the necessary input variables for the backscattering model. Using this synergistic, coupled modelling approach, a realistic simulation of SAR images becomes possible based on land surface model output variables. It is shown, that this coupled modelling approach leads to promising and accurate estimates of the backscattering coefficients. The remaining residuals between simulated and measured backscatter values are analysed to identify the sources of uncertainty in the model. A detailed field based analysis of the simulation results revealed that imprecise soil moisture predictions by the land surface model are a major source of uncertainty, which can be related to imprecise soil texture distribution and soil hydrological properties. The sensitivity of the backscattering coefficient to the soil moisture content of the upper soil layer can be used to generate soil moisture maps from SAR imagery. An algorithm for the inversion of soil moisture from the upper soil layer is suggested and validated. It makes use of initial soil moisture values, provided by the land surface process model. Soil moisture values are inverted by means of the coupled land surface backscattering model. The retrieved soil moisture results have an RMSE of 3.5 Vol %, which is comparable to the measurement accuracy of the reference field data. The developed models allow for the accurate prediction of the SAR backscattering coefficient. The various soil and vegetation scattering contributions can be separated. The direct interface to a physically based land surface process model allows for the spatially distributed modelling of the backscattering coefficient and the direct assimilation of remote sensing data into a land surface process model. The developed models allow for the derivation of static and dynamic landsurface parameters, as e.g. surface roughness, soil texture, soil moisture and biomass from remote sensing data and their assimilation in process models. They are therefore reliable tools, which can be used for sophisticated practice oriented problem solutions in manifold manner in the earth and environmental sciences

    The European heat wave 2003: early indicators from multisensoral microwave remote sensing?

    Get PDF
    An extreme heat wave affected large parts of Europe in 2003 with severe socioeconomic impacts. The extreme warm weather conditions lasted over a couple of months with positive temperature anomalies of 5°C for large parts of Europe. Simulations of the event using regional climate models revealed that a pronounced precipitation deficit in the beginning of the year, together with an early onset of the vegetation, resulted in a severe deficit of the soil water content. This amplified the course of the heat wave due to an increasing sensible heat flux from the land surface. The monitoring of temporal and spatial dynamics of soil water content can be accomplished using remote-sensing-based techniques. The present paper addresses the question whether there have been early indicators for the low soil water content using either physically based land surface modeling or remote-sensing-based monitoring techniques. The course of the spring surface soil moisture evolution is investigated using observations from two different microwave remote sensing sensors. An intercomparison of the high-resolution data from the European ENVISAT satellite and coarse resolution data from the AMSR-E mission is made. Remote-sensing-derived soil moisture products are compared against the results from a deterministic land surface model. The model enables to relate the year 2003 anomalies to a long-term (30 years) climatology. The year 2003 remote sensing derived soil moisture dynamics is compared against a multiyear climatology. The results reveal a negative surface soil moisture anomaly in 2003. The results indicate that there was in general potential to monitor the spatial and temporal dimensions of the low surface soil water content early in 2003 using remote sensing techniques. Both remote sensing data sets indicate a consistent soil moisture decrease in early 2003. A good agreement between the observed surface soil moisture and soil moisture simulations from a land surface process model was found. An outlook to the use of remote-sensing-based soil moisture estimates for large-scale monitoring of surface soil moisture trends is given. Copyright 2009 by the American Geophysical Union

    Accounting for seasonality in a soil moisture change detection algorithm for ASAR Wide Swath time series

    Get PDF
    A change detection algorithm is applied on a three year time series of ASAR Wide Swath images in VV polarization over Calabria, Italy, in order to derive information on temporal soil moisture dynamics. The algorithm, adapted from an algorithm originally developed for ERS scatterometer, was validated using a simple hydrological model incorporating meteorological and pedological data. Strong positive correlations between modelled soil moisture and ASAR soil moisture were observed over arable land, while the correlation became much weaker over more vegetated areas. In a second phase, an attempt was made to incorporate seasonality in the different model parameters. It was observed that seasonally changing surface properties mainly affected the multitemporal incidence angle normalization. When applying a seasonal angular normalization, correlation coefficients between modelled soil moisture and retrieved soil moisture increased overall. Attempts to account for seasonality in the other model parameters did not result in an improved performance

    Capability of C-band SAR for operational wetland monitoring at high latitudes

    Get PDF
    Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction) for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENVISAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW) in northern Russia (SW = degree of saturation with water, 1 = saturated), which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic) showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of wetland fraction
    corecore