56 research outputs found

    3D conformal antennas for radar applications

    Get PDF
    Embedded below the radome of a missile, existing RF-seekers use a mechanical rotating antenna to steer the radiating beam in the direction of a target. Latest research is looking at replacing the mechanical antenna components of the RF seeker with a novel 3D conformal antenna array that can steer the beam electronically. 3D antennas may oer signicant advantages, such as faster beamsteering and better coverage but, at the same time, introduce new challenges resulting from a much more complex radiation pattern than that of 2D antennas. Thanks to the mechanical system removal, the new RF-seeker has a wider available space for the design of a new 3D conformal antenna. To take best benets of this space, dierent array shapes are studied, hence the impact of the position, orientation and conformation of the elements is assessed on the antenna performance in terms of directivity, ellipticity and polarisation. To facilitate this study of 3D conformal arrays, a Matlab program has been developed to compute the polarisation pattern of a given array in all directions. One of the task of the RF-seeker consists in estimating the position of a given target to correct the missile trajectory accordingly. Thus, the impact of the array shape on the error between the measured direction of arrival of the target echo and its true value is addressed. The Cramer-Rao lower bound is used to evaluate the theoretical minimum error. The model assumes that each element receives independently and allows therefore to analyse the potential of active 3D conformal arrays. Finally, the phase monopulse estimator is studied for 3D conformal arrays whose quadrants do not have the same characteristics. A new estimator more adapted to non-identical quadrants is also proposed

    Statistical Error Analysis of a DOA Estimator for a PCL System Using the Cramer-RAO Bound Theorem

    Get PDF
    Direction of Arrival (DOA) estimation of signals has been a popular research area in Signal Processing. DOA estimation also has a significant role in the object location process of Passive Coherent Location (PCL) systems. PCL systems have been in open literature since 1986 and their applications are not as clearly understood as the DOA estimation problem. However, they are the focus of many current research efforts and show much promise. The purpose of this research is to analyze the DOA estimation errors in a PCL system. The performance of DOA estimators is studied using the Cramer-Rao Bound (CRB) Theorem. The CRB provides a lower bound on the variance of unbiased DOA estimators. Since variance is a desirable property for measuring the accuracy of an estimator, the CRB gives a good indication about the performance of an estimator. Previous DOA estimators configured with array antennas used the array antenna manifold, or the properties of the array antenna structure, to estimate signal DOA. Conventional DOA estimators use arbitrary signal (AS) structures. Constant Modulus (CM) DOA estimators restrict the input signals to a family of constant envelope signals, and when there are multiple signals in the environment, CM DOA estimators are able to separate signals from each other using the CM signal property. CM estimators then estimate the DOA for each signal individually. This research compares the CRB for AS and CM DOA estimators for a selected system. The CRB is also computed for this system when single and multiple and moving objects are present. The CRBAS and CRBCM are found to be different for the multiple signal case and moving object cases

    Performance Analysis of Angle of Arrival Algorithms Applied to Radiofrequency Interference Direction Finding

    Get PDF
    Radiofrequency (RF) interference threatens the functionality of systems that increasingly underpin the daily function of modern society. In recent years there have been multiple incidents of intentional RF spectrum denial using terrestrial interference sources. Because RF based systems are used in safety-of-life applications in both military and civilian contexts, there is need for systems that can quickly locate these interference sources. In order to meet this need, the Air Force Research Laboratory Weapons Directorate is sponsoring the following research to support systems that will be able to quickly geolocate RF interferers using passive angle-of-arrival estimation to triangulate interference sources. This research studies the performance of angle-of arrival (AoA) estimation algorithms for an existing uniform linear antenna array. Four algorithms are presented, they are phase-shift beamforming, Capon or Minimum Variance Distortionless Response (MVDR) beamforming, the Multiple Signal Identification and Classification (MUSIC) algorithm, and one instantiation of a Maximum Likelihood Estimation (MLE) algorithm. A modeling and simulation environment using MATLABâ„¢ is developed and the performance of each algorithm is simulated as implemented on a uniform linear array. Performance is characterized under various non-ideal conditions

    3-D Beamspace ML Based Bearing Estimator Incorporating Frequency Diversity and Interference Cancellation

    Get PDF
    The problem of low-angle radar tracking utilizing an array of antennas is considered. In the low-angle environment, echoes return from a low flying target via a specular path as well as a direct path. The problem is compounded by the fact that the two signals arrive within a beamwidth of each other and are usually fully correlated, or coherent. In addition, the SNR at each antenna element is typically low and only a small number of data samples, or snapshots, is available for processing due to the rapid movement of the target. Theoretical studies indicates that the Maximum Likelihood (ML) method is the only reliable estimation procedure in this type of scenario. However, the classical ML estimator involves a multi-dimensional search over a multi-modal surface and is consequently computationally burdensome. In order to facilitate real time processing, we here propose the idea of beamspace domain processing in which the element space snapshot vectors are first operated on by a reduced Butler matrix composed of three orthogonal beamforming weight vectors facilitating a simple, closed-form Beamspace Domain ML (BDML) estimator for the direct and specular path angles. The computational simplicity of the method arises from the fact that the respective beams associated with the three columns of the reduced Butler matrix have all but three nulls in common. The performance of the BDML estimator is enhanced by incorporating the estimation of the complex reflection coefficient and the bisector angle, respectively, for the symmetric and nonsymmetric multipath cases. To minimize the probability of track breaking, the use of frequency diversity is incorporated. The concept of coherent signal subspace processing is invoked as a means for retaining the computational simplicity of single frequency operation. With proper selection of the auxiliary frequencies, it is shown that perfect focusing may be achieved without iterating. In order to combat the effects of strong interfering sources, a novel scheme is presented for adaptively forming the three beams which retains the feature of common nulls

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Investigation of Non-coherent Discrete Target Range Estimation Techniques for High-precision Location

    Get PDF
    Ranging is an essential and crucial task for radar systems. How to solve the range-detection problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution are the points of interest as well. Coherent and non-coherent techniques can be applied to achieve range estimation, and both of them have advantages and disadvantages. Coherent estimates offer higher precision but are more vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, while the non-coherent approaches are simpler but provide lower precision. With the purpose of mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-coherent estimate are now introduced into the coherent realm, and vice versa. This thesis describes two non-coherent ranging estimate techniques with novel algorithms to mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier transform is implemented to attain a coarse estimation; an accurate process around the point of interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately implements the periodogram where only a narrow band spectrum is processed. Furthermore, the concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of these two techniques from the perspective of statistical signal processing. Mathematical derivation, simulation modelling, theoretical analysis and experimental validation are conducted to assess technique performance. Further research will be pushed forward to algorithm optimisation and system development of a location system using non-coherent techniques and make a comparison to a coherent approach

    Realization Limits of Impulse-Radio UWB Indoor Localization Systems

    Get PDF
    In this work, the realization limits of an impulse-based Ultra-Wideband (UWB) localization system for indoor applications have been thoroughly investigated and verified by measurements. The analysis spans from the position calculation algorithms, through hardware realization and modeling, up to the localization experiments conducted in realistic scenarios. The main focus was put on identification and characterization of limiting factors as well as developing methods to overcome them

    Analytical evaluation of ILM sensors, volume 1

    Get PDF
    The functional requirements and operating environment constraints are defined for an independent landing monitor ILM which provides the flight crew with an independent assessment of the operation of the primary automatic landing system. The capabilities of radars, TV, forward looking infrared radiometers, multilateration, microwave radiometers, interferometers, and nuclear sensing concepts to meet the ILM conditions are analyzed. The most critical need for the ILM appears in the landing sequence from 1000 to 2000 meters from threshold through rollout. Of the sensing concepts analyzed, the following show potential of becoming feasible ILM's: redundant microwave landings systems, precision approach radar, airborne triangulation radar, multilateration with radar altimetry, and nuclear sensing

    Localization of Rovers on the Lunar Surface using the Monopulse Technique

    Get PDF
    The interest in the Moon has significantly increased in the recent years due to the fact that the International Space Station will retire in the near future and because of the increased space activity of private companies. However,one major challenge of currently planned Lunar missions is the provision of cheap and reliable energy, restricting most missions to short durations and reducing mobility. In order to overcome this problem, the LunarSpark company envisions launch-ing a space-based power plant to orbit the Moon. This system can pro-vide energy via laser to customers on the Lunar surface and thus eliminates the problem of cheap and reliable energy. Further, the system shall au-tonomously detect the coarse relative position between the satellite and the customer. This is needed in order to trigger a laser-based localization of the exact customer position, as it is already commonly performed in laser-based communication systems. LunarSpark decided to deploy a Radio-Frequency (RF) beacon on the cus-tomer system. This beacon is used to retrieve a coarsely estimated customer position via microwaves and is investigated in this thesis. The monopulse technique is used for this purpose because unlike a radar measuring Doppler and distances, which is sensitive to topography and spatial position uncer-tainties when converting to the relative angular position, the monopulse technique allows to directly measure the angular direction. Thus, this work analyzes the requirements that such an RF beacon needs to fulfill for the monopulse technique, as well as how its operation fits into the overall opera-tional timeline of the LunarSpark system. In addition, it also establishes the design parameters of this beacon. The work is supported with theoretical and simulated performance analyses to derive the final design parameters
    • …
    corecore