5,442 research outputs found

    Derivation of incremental equations for PNF nested relations

    Get PDF
    Incremental view maintenance techniques are required for many new types of data models that are being increasingly used in industry. One of these models is the nested relational model that is used in the modelling complex objects in databases. In this paper we derive a group of expressions for incrementally evaluating query expressions in the nested relational model. We also present an algorithm to propagate base relation updates to a materialized view when the view is defined as a complex query

    Models of nonlinear kinematic hardening based on different versions of rate-independent maxwell fluid

    Get PDF
    Different models of finite strain plasticity with a nonlinear kinematic hardening are analyzed in a systematic way. All the models are based on a certain formulation of a rate-independent Maxwell fluid, which is used to render the evolution of backstresses. The properties of each material model are determined by the underlying formulation of the Maxwell fluid. The analyzed approaches include the multiplicative hyperelastoplasticity, additive hypoelasto-plasticity and the use of generalized strain measures. The models are compared with respect to different classification criteria, such as the objectivity, thermodynamic consistency, pure volumetric-isochoric split, shear stress oscillation, exact integrability, and w-invariance

    Acta Cybernetica : Volume 16. Number 1.

    Get PDF

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    Tax incentives, market power,and corporate investment : a rational expectations model applied to Pakistani and Turkish industries

    Get PDF
    The objective of this paper is to examine the effect of tax incentives on investment in physical capital and in research and development, and indirectly on output and the demand for labor and materials. For this purpose the authors calculate the effect of tax incentives on the rental prices of the services of physical and knowledge capital, and of these rental prices on both types of investment. The paper outlines the structure of corporate taxation and of investment incentives in Pakistan and Turkey. It presents the theoretical model, with the details of derivations given in appendices 1 to 3. Appendix 4 presents the formulae for the elasticities which were computed; appendix 5 discusses the method of estimation and the non-nested hypothesis tests; while appendix 6 gives the sources for the data and outlines how the variables were constructed from the raw data. Finally, the paper summarizes the empirical results and comments are given on the policy implications of these results.Economic Theory&Research,Environmental Economics&Policies,Banks&Banking Reform,International Terrorism&Counterterrorism,Public Sector Economics&Finance

    Constitutive modeling of two phase materials using the Mean Field method for homogenization

    Get PDF
    A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent phases. Different homogenization schemes that exist in the literature are implemented in efficient algorithms to be used in full-scale FE simulations. These schemes are compared with each other in terms of efficiency. Additionally two new schemes are proposed which are both computationally efficient and compare in accuracy with the more physically based approaches. Finally the algorithms are demonstrated on FE simulations of sheet metal forming operations and compared with experimental results

    Nonlinear micromechanical formulation of the high fidelity generalized method of cells

    Get PDF
    AbstractThe recent High Fidelity Generalized Method of Cells (HFGMC) micromechnical modeling framework of multiphase composites is formulated in a new form which facilitates its computational efficiency that allows an effective multiscale material–structural analysis. Towards this goal, incremental and total formulations of the governing equations are derived. A new stress update computational method is established to solve for the nonlinear material constituents along with the micromechanical equations. The method is well-suited for multiaxial finite increments of applied average stress or strain fields. Explicit matrix form of the HFGMC model is presented which allows an immediate and convenient computer implementation of the offered method. In particular, the offered derivations provide for the residual field vector (error) in its incremental and total forms along with an explicit expression for the Jacobian matrix. This enables the efficient iterative computational implementation of the HFGMC as a stand alone. Furthermore, the new formulation of the HFGMC is used to generate a nested local-global nonlinear finite element analysis of composite materials and structures. Applications are presented to demonstrate the efficiency of the proposed approach. These include the behavior of multiphase composites with nonlinearly elastic, elastoplastic and viscoplastic constituents
    corecore