2,118 research outputs found

    A Non-blocking Buddy System for Scalable Memory Allocation on Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components handle concurrent allocation/release requests by synchronizing threads via spin-locks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators - the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, that allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Beyond improving scalability and performance it is resilient to performance degradation in face of concurrent accesses independently of the current level of fragmentation of the handled memory blocks

    NBBS: A Non-blocking Buddy System for Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components, like the Linux buddy system, handle concurrent allocation/release requests by synchronizing threads via spinlocks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators—the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, where threads performing concurrent allocations/releases do not undergo any spinlock based synchronization. Our solution allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Conflict detection relies on conventional atomic machine instructions in the Read-Modify-Write (RMW) class. Beyond improving scalability and performance, our solution can also avoid wasting clock cycles for spin-lock operations by threads that could in principle carry out their memory allocation/release in full concurrency. Thus, it is resilient to performance degradation—in face of concurrent accesses—independently of the current level of fragmentation of the handled memory blocks

    Models for energy consumption of data structures and algorithms

    Get PDF
    EXCESS deliverable D2.1. More information at http://www.excess-project.eu/This deliverable reports our early energy models for data structures and algorithms based on both micro-benchmarks and concurrent algorithms. It reports the early results of Task 2.1 on investigating and modeling the trade-off between energy and performance in concurrent data structures and algorithms, which forms the basis for the whole work package 2 (WP2). The work has been conducted on the two main EXCESS platforms: (1) Intel platform with recent Intel multi-core CPUs and (2) Movidius embedded platform

    Concurrent Data Structures Linked in Time

    Get PDF
    Arguments about correctness of a concurrent data structure are typically carried out by using the notion of linearizability and specifying the linearization points of the data structure's procedures. Such arguments are often cumbersome as the linearization points' position in time can be dynamic (depend on the interference, run-time values and events from the past, or even future), non-local (appear in procedures other than the one considered), and whose position in the execution trace may only be determined after the considered procedure has already terminated. In this paper we propose a new method, based on a separation-style logic, for reasoning about concurrent objects with such linearization points. We embrace the dynamic nature of linearization points, and encode it as part of the data structure's auxiliary state, so that it can be dynamically modified in place by auxiliary code, as needed when some appropriate run-time event occurs. We name the idea linking-in-time, because it reduces temporal reasoning to spatial reasoning. For example, modifying a temporal position of a linearization point can be modeled similarly to a pointer update in separation logic. Furthermore, the auxiliary state provides a convenient way to concisely express the properties essential for reasoning about clients of such concurrent objects. We illustrate the method by verifying (mechanically in Coq) an intricate optimal snapshot algorithm due to Jayanti, as well as some clients
    • …
    corecore