47 research outputs found

    Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates

    Full text link
    In this paper we show the existence of global minimizers for the geometrically exact, non-linear equations of elastic plates, in the framework of the general 6-parametric shell theory. A characteristic feature of this model for shells is the appearance of two independent kinematic fields: the translation vector field and the rotation tensor field (representing in total 6 independent scalar kinematic variables). For isotropic plates, we prove the existence theorem by applying the direct methods of the calculus of variations. Then, we generalize our existence result to the case of anisotropic plates. We also present a detailed comparison with a previously established Cosserat plate model.Comment: 19 pages, 1 figur

    An asymptotic strain gradient Reissner-Mindlin plate model

    No full text
    In this paper we derive a strain gradient plate model from the three-dimensional equations of strain gradient linearized elasticity. The deduction is based on the asymptotic analysis with respect of a small real parameter being the thickness of the elastic body we consider. The body is constituted by a second gradient isotropic linearly elastic material. The obtained model is recognized as a strain gradient Reissner-Mindlin plate model. We also provide a mathematical justification of the obtained plate model by means of a variational weak convergence result

    A geometrically nonlinear Cosserat (micropolar) curvy shell model via Gamma convergence

    Full text link
    Using Γ\Gamma-convergence arguments, we construct a nonlinear membrane-like Cosserat shell model on a curvy reference configuration starting from a geometrically nonlinear, physically linear three-dimensional isotropic Cosserat model. Even if the theory is of order O(h)O(h) in the shell thickness hh, by comparison to the membrane shell models proposed in classical nonlinear elasticity, beside the change of metric, the membrane-like Cosserat shell model is still capable to capture the transverse shear deformation and the {Cosserat}-curvature due to remaining Cosserat effects. We formulate the limit problem by scaling both unknowns, the deformation and the microrotation tensor, and by expressing the parental three-dimensional Cosserat energy with respect to a fictitious flat configuration. The model obtained via Γ\Gamma-convergence is similar to the membrane {(no O(h3)O(h^3) flexural terms, but still depending on the Cosserat-curvature)} Cosserat shell model derived via a derivation approach but these two models do not coincide. Comparisons to other shell models are also included

    Dynamic problems for metamaterials: Review of existing models and ideas for further research

    Get PDF
    Metamaterials are materials especially engineered to have a peculiar physical behaviour, to be exploited for some well-specified technological application. In this context we focus on the conception of general micro-structured continua, with particular attention to piezoelectromechanical structures, having a strong coupling between macroscopic motion and some internal degrees of freedom, which may be electric or, more generally, related to some micro-motion. An interesting class of problems in this context regards the design of wave-guides aimed to control wave propagation. The description of the state of the art is followed by some hints addressed to describe some possible research developments and in particular to design optimal design techniques for bone reconstruction or systems which may block wave propagation in some frequency ranges, in both linear and non-linear fields. (C) 2014 Elsevier Ltd. All rights reserved

    Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 1

    Get PDF
    This research program has dealt with the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements; (2) finite element modeling of the electromagnetic problem; (3) coupling of thermal and mechanical effects; and (4) computer implementation and solution of the superconductivity transition problem. The research was carried out over the period September 1988 through March 1993. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles; (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements; and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects; and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The grant has fully supported the thesis work of one doctoral student (James Schuler, who started on January 1989 and completed on January 1993), and partly supported another thesis (Carmelo Militello, who started graduate work on January 1988 completing on August 1991). Twenty-three publications have acknowledged full or part support from this grant, with 16 having appeared in archival journals and 3 in edited books or proceedings

    Linear models for thin plates of polymer gels

    Full text link
    Within the linearized three-dimensional theory of polymer gels, we consider a sequence of problems formulated on a family of cylindrical domains whose height tends to zero. We assume that the fluid pressure is controlled at the top and bottom faces of the cylinder, and we consider two different scaling regimes for the diffusivity tensor. Through asymptotic-analysis techniques we obtain two plate models where the transverse displacement is governed by a plate equation with an extra contribution from the fluid pressure. In the limit obtained within the first scaling regime the fluid pressure is affine across the thickness and hence it is determined by its instantaneous trace on the top and bottom faces. In the second model, instead, the value of the fluid pressure is governed by a three-dimensional diffusion equation

    Modélisation des murs en maçonnerie sous sollicitations sismiques

    Get PDF
    Developed. The method is based on the two-dimensional micropolar continuum theory and makes use of the kinematic approach of limit analysis in conjunction with a rigorous homogenization technique. The method is introduced in a general way, with regard to the genericclass of discrete periodic media made of particles of the same type. The case of masonry is presented as application. The homogenised strength domains of masonry columns and walls are retrieved in terms of the generalized stresses and couple stresses of the Cosserat continuum. The formulation of the method based on the Cosserat continuum enables the investigation of the influence of the relative rotation of the particles on the strength of the discrete medium. This influence is illustrated by the application to masonry structures, in comparison with other methods presented in the literature. The development of the homogenisation method continues with its extension to discrete periodic media made of particles disposed along three directions and showing three periodicity vectors. In this case, the approach relies on the three-dimensional micropolar theory. This enables to capture the three-dimensional effect of the relative translations and rotations of the particles constituting the discrete medium. The application to masonry columns and walls shows how the in-plane and out-of-plane actions result coupled in the assessment of masonry strength. The relative rotation of the blocks accentuates this effect, which consistently diminishes the in-plane strength. Masonry walls are finally ascribed to homogenised plates with Cosserat kinematics. A finite element formulation for Cosserat plate models is next developed. The formulation is first presented for elasticity and dynamics. The validation of a specific finite element is made by means of numerical benchmarks and patch tests. The actual use of the element is presented in an application to masonry structures. The natural frequencies of a masonry panel modelled by discrete elements are computed and compared with those given by a homogenisation model implemented in the element. This allows to investigate the role of the in-plane rotations of the blocks and to show their implication towards seismic analyses of masonry structures. The finite element formulation is next extended to the elastoplastic framework. The implementation of the multisurface plasticity theory into the Cosserat finite element is presented. The implementation of this theory is based on a projection algorithm. An important limitation of the classical implementation of this algorithm prevents its use in the framework of multisurface plasticity in efficient way. This limitation is discussed and a solution strategy is proposed. The finite element for Cosserat plate models is finally validated through numerous numerical benchmarks. In conclusion, three different modelling approaches for masonry are proposed and comviipared. A continuum model based on the Cosserat continuum is first presented. The model isconstructed by implementing the homogenised yield criteria computed based on the proposed analytical method into the developed finite element. A homogenisation model based on Cauchy continuum is next introduced. This model is constructed by selecting appropriate constitutive laws and yield criteria from the literature. The performance of those homogenisation models in representing the elastoplastic response of a masonry panel is discussed, based on the comparison with a third analogue discrete elements model. The capability of the three models in predicting the scale effect in the formation of failure mechanisms is investigated in a practical application to masonry structuresDans un premier temps, la méthode est présentée pour le cas bidimensionnel. La méthode est introduite de manière générale, en ce qui concerne les milieux discrets périodiques. L’application à la maçonnerie est ensuite abordée. La résistance homogénéisée de colonnes et murs de maçonnerie est calculée en termes de contraintes et couples-contraintes généralisées du milieu continu de Cosserat. La formulation d’une méthode basée sur le milieu de Cosserat permet la prise en compte de l’influence de la rotation relative des particules du milieu discret. Cette influence est mise en évidence à travers l’application à la maçonnerie, en comparaison avec les autres méthodes présentes dans la littérature. Dans un deuxième temps, la méthode est étendue au cas tridimensionnel. Des milieux discrets périodiques ayant leurs particules disposées le long de trois directions spatiales et montrant trois vecteurs de périodicité sont alors considérés. L’extension de la méthode s’inscrit dans le cadre de la théorie micropolaire tridimensionnelle. Cela permet la prise en compte des effets 3Dde la translation et la rotation relative des particules. L’application aux colonnes et aux murs de maçonnerie montre comment la résistance dans le plan et hors-plan de la maçonnerie sont, par ces effets, couplées. La rotation relative des blocs accentue cette interaction, qui comporte une diminution de la résistance dans-le-plan précédemment calculée. Les murs de maçonnerie sont ici décrits par des modèles de plaque micropolaire. Une formulation aux éléments finis pour des modèles de plaque micropolaire est ensuite développée. Dans un premier temps, la formulation est présentée pour l’élasticité et la dynamique. La validation d’un élément fini spécifique pour le calcul des structures est faite à l’aide d’exemples numériques. L’utilisation de cet élément sur des structures de maçonnerie est ensuite abordée, par l’implémentation d’un modèle d’homogénéisation déjà existant. Les fréquences fondamentales d’un mur maçonné sont ainsi calculées et comparées avec celle obtenues par un modèles aux éléments discrets. L’importance des rotations des blocs dans le plan du mur ainsi que leur participation dans la réponse inertielle du mur vis-à-vis des actions sismiques sont enfin investiguées. Dans un deuxième temps, la formulation aux élements finis est étendue à la plasticité, à travers l’implémentation de la théorie multi-critère pour les milieux de Cosserat. L’implémentation de cette théorie est basée sur un algorithme de projection, dont le schéma itératif de résolution est reporté. Les aspects numériques reliés à l’implémentation de l’algorithme sont examinés. Une importante limitation de l’implémentation classique de l’algoritme est montrée et une nouvelle stratégie de solution est proposée. L’élément fini de Cosserat est donc validé pour la plasticite à l’aide de nombreux exemples numériques. En conclusion, trois approches de modélisation pour les structures de maçonnerie sont proposéeset comparées. Un model continu d’homogénéisation basée sur le milieu de Cosserat est d’abord présenté. Le modèle est construit en introduisant les critères de ruptures homogénéisés calculés dans la première partie du travail dans l’élément fini développé dans la deuxième partie du travail. Un modèle continu basée sur le milieu de Cauchy est ensuite considéré. Ce denier est construit à partir de modèles déjà présents dans la littérature. L’efficacité de ces deux modèles est examinée dans la représentation du comportement élastoplastique d’un mur de maçonnerie. Leur comparaison se base sur un troisième modèle, crée à l’aide des éléments discrets. La capacité des trois modèles de modéliser l’effet d’échelle dans la formation des mécanismes de ruine est enfin investiguée sur une application pratique aux structures de maçonneri
    corecore