2,873 research outputs found

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    Fujaba days 2009 : proceedings of the 7th international Fujaba days, Eindhoven University of Technology, the Netherlands, November 16-17, 2009

    Get PDF
    Fujaba is an Open Source UML CASE tool project started at the software engineering group of Paderborn University in 1997. In 2002 Fujaba has been redesigned and became the Fujaba Tool Suite with a plug-in architecture allowing developers to add functionality easily while retaining full control over their contributions. Multiple Application Domains Fujaba followed the model-driven development philosophy right from its beginning in 1997. At the early days, Fujaba had a special focus on code generation from UML diagrams resulting in a visual programming language with a special emphasis on object structure manipulating rules. Today, at least six rather independent tool versions are under development in Paderborn, Kassel, and Darmstadt for supporting (1) reengineering, (2) embedded real-time systems, (3) education, (4) specification of distributed control systems, (5) integration with the ECLIPSE platform, and (6) MOF-based integration of system (re-) engineering tools. International Community According to our knowledge, quite a number of research groups have also chosen Fujaba as a platform for UML and MDA related research activities. In addition, quite a number of Fujaba users send requests for more functionality and extensions. Therefore, the 7th International Fujaba Days aimed at bringing together Fujaba developers and Fujaba users from all over the world to present their ideas and projects and to discuss them with each other and with the Fujaba core development team

    A Solution to the Flowgraphs Case Study using Triple Graph Grammars and eMoflon

    Full text link
    After 20 years of Triple Graph Grammars (TGGs) and numerous actively maintained implementations, there is now a need for challenging examples and success stories to show that TGGs can be used for real-world bidirectional model transformations. Our primary goal in recent years has been to increase the expressiveness of TGGs by providing a set of pragmatic features that allow a controlled fallback to programmed graph transformations and Java. Based on the Flowgraphs case study of the Transformation Tool Contest (TTC 2013), we present (i) attribute constraints used to express complex bidirectional attribute manipulation, (ii) binding expressions for specifying arbitrary context relationships, and (iii) post-processing methods as a black box extension for TGG rules. In each case, we discuss the enabled trade-off between guaranteed formal properties and expressiveness. Our solution, implemented with our metamodelling and model transformation tool eMoflon (www.emoflon.org), is available as a virtual machine hosted on Share.Comment: In Proceedings TTC 2013, arXiv:1311.753

    Model-Driven Engineering for Artificial Intelligence - A Systematic Literature Review

    Get PDF
    Objective: This study aims to investigate the existing body of knowledge in the field of Model-Driven Engineering MDE in support of AI (MDE4AI) to sharpen future research further and define the current state of the art. Method: We conducted a Systemic Literature Review (SLR), collecting papers from five major databases resulting in 703 candidate studies, eventually retaining 15 primary studies. Each primary study will be evaluated and discussed with respect to the adoption of (1) MDE principles and practices and (2) the phases of AI development support aligned with the stages of the CRISP-DM methodology. Results: The study's findings show that the pillar concepts of MDE (metamodel, concrete syntax and model transformation), are leveraged to define domain-specific languages (DSL) explicitly addressing AI concerns. Different MDE technologies are used, leveraging different language workbenches. The most prominent AI-related concerns are training and modeling of the AI algorithm, while minor emphasis is given to the time-consuming preparation of the data sets. Early project phases that support interdisciplinary communication of requirements, such as the CRISP-DM \textit{Business Understanding} phase, are rarely reflected. Conclusion: The study found that the use of MDE for AI is still in its early stages, and there is no single tool or method that is widely used. Additionally, current approaches tend to focus on specific stages of development rather than providing support for the entire development process. As a result, the study suggests several research directions to further improve the use of MDE for AI and to guide future research in this area
    • …
    corecore