97 research outputs found

    The positive semidefinite Grothendieck problem with rank constraint

    Full text link
    Given a positive integer n and a positive semidefinite matrix A = (A_{ij}) of size m x m, the positive semidefinite Grothendieck problem with rank-n-constraint (SDP_n) is maximize \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i \cdot x_j, where x_1, ..., x_m \in S^{n-1}. In this paper we design a polynomial time approximation algorithm for SDP_n achieving an approximation ratio of \gamma(n) = \frac{2}{n}(\frac{\Gamma((n+1)/2)}{\Gamma(n/2)})^2 = 1 - \Theta(1/n). We show that under the assumption of the unique games conjecture the achieved approximation ratio is optimal: There is no polynomial time algorithm which approximates SDP_n with a ratio greater than \gamma(n). We improve the approximation ratio of the best known polynomial time algorithm for SDP_1 from 2/\pi to 2/(\pi\gamma(m)) = 2/\pi + \Theta(1/m), and we show a tighter approximation ratio for SDP_n when A is the Laplacian matrix of a graph with nonnegative edge weights.Comment: (v3) to appear in Proceedings of the 37th International Colloquium on Automata, Languages and Programming, 12 page

    Approximate Graph Coloring by Semidefinite Programming

    Full text link
    We consider the problem of coloring k-colorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3-colorable graph on nn vertices with min O(Delta^{1/3} log^{1/2} Delta log n), O(n^{1/4} log^{1/2} n) colors where Delta is the maximum degree of any vertex. Besides giving the best known approximation ratio in terms of n, this marks the first non-trivial approximation result as a function of the maximum degree Delta. This result can be generalized to k-colorable graphs to obtain a coloring using min O(Delta^{1-2/k} log^{1/2} Delta log n), O(n^{1-3/(k+1)} log^{1/2} n) colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2-SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovasz theta-function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the theta-function

    Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem

    Get PDF
    MAX−CUT is one of the well-studied NP-hard combinatorial optimization problems. It can be formulated as an Integer Quadratic Programming problem and admits a simple relaxation obtained by replacing the integer “spin” variables xi by unitary vectors v⃗ i. The Goemans–Williamson rounding algorithm assigns the solution vectors of the relaxed quadratic program to a corresponding integer spin depending on the sign of the scalar product v⃗ i⋅r⃗ with a random vector r⃗ . Here, we investigate whether better graph cuts can be obtained by instead using a more sophisticated clustering algorithm. We answer this question affirmatively. Different initializations of k-means and k-medoids clustering produce better cuts for the graph instances of the most well known benchmark for MAX−CUT. In particular, we found a strong correlation of cluster quality and cut weights during the evolution of the clustering algorithms. Finally, since in general the maximal cut weight of a graph is not known beforehand, we derived instance-specific lower bounds for the approximation ratio, which give information of how close a solution is to the global optima for a particular instance. For the graphs in our benchmark, the instance specific lower bounds significantly exceed the Goemans–Williamson guarantee

    Online Semidefinite Programming

    Get PDF
    We consider semidefinite programming through the lens of online algorithms - what happens if not all input is given at once, but rather iteratively? In what way does it make sense for a semidefinite program to be revealed? We answer these questions by defining a model for online semidefinite programming. This model can be viewed as a generalization of online coveringpacking linear programs, and it also captures interesting problems from quantum information theory. We design an online algorithm for semidefinite programming, utilizing the online primaldual method, achieving a competitive ratio of O(log(n)), where n is the number of matrices in the primal semidefinite program. We also design an algorithm for semidefinite programming with box constraints, achieving a competitive ratio of O(log F*), where F* is a sparsity measure of the semidefinite program. We conclude with an online randomized rounding procedure

    Randomized Rounding for the Largest Simplex Problem

    Full text link
    The maximum volume jj-simplex problem asks to compute the jj-dimensional simplex of maximum volume inside the convex hull of a given set of nn points in Qd\mathbb{Q}^d. We give a deterministic approximation algorithm for this problem which achieves an approximation ratio of ej/2+o(j)e^{j/2 + o(j)}. The problem is known to be NP\mathrm{NP}-hard to approximate within a factor of cjc^{j} for some constant c>1c > 1. Our algorithm also gives a factor ej+o(j)e^{j + o(j)} approximation for the problem of finding the principal j×jj\times j submatrix of a rank dd positive semidefinite matrix with the largest determinant. We achieve our approximation by rounding solutions to a generalization of the DD-optimal design problem, or, equivalently, the dual of an appropriate smallest enclosing ellipsoid problem. Our arguments give a short and simple proof of a restricted invertibility principle for determinants
    • 

    corecore