29 research outputs found

    Tighter Connections between Derandomization and Circuit Lower Bounds

    Get PDF
    We tighten the connections between circuit lower bounds and derandomization for each of the following three types of derandomization: - general derandomization of promiseBPP (connected to Boolean circuits), - derandomization of Polynomial Identity Testing (PIT) over fixed finite fields (connected to arithmetic circuit lower bounds over the same field), and - derandomization of PIT over the integers (connected to arithmetic circuit lower bounds over the integers). We show how to make these connections uniform equivalences, although at the expense of using somewhat less common versions of complexity classes and for a less studied notion of inclusion. Our main results are as follows: 1. We give the first proof that a non-trivial (nondeterministic subexponential-time) algorithm for PIT over a fixed finite field yields arithmetic circuit lower bounds. 2. We get a similar result for the case of PIT over the integers, strengthening a result of Jansen and Santhanam [JS12] (by removing the need for advice). 3. We derive a Boolean circuit lower bound for NEXP intersect coNEXP from the assumption of sufficiently strong non-deterministic derandomization of promiseBPP (without advice), as well as from the assumed existence of an NP-computable non-empty property of Boolean functions useful for proving superpolynomial circuit lower bounds (in the sense of natural proofs of [RR97]); this strengthens the related results of [IKW02]. 4. Finally, we turn all of these implications into equivalences for appropriately defined promise classes and for a notion of robust inclusion/separation (inspired by [FS11]) that lies between the classical "almost everywhere" and "infinitely often" notions

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developements are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, quantum mechanics, representation theory, and the theory of error-correcting codes

    A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits

    Get PDF

    Separation Between Read-once Oblivious Algebraic Branching Programs (ROABPs) and Multilinear Depth Three Circuits

    Get PDF
    We show an exponential separation between two well-studied models of algebraic computation, namely read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In particular we show the following: 1. There exists an explicit n-variate polynomial computable by linear sized multilinear depth three circuits (with only two product gates) such that every ROABP computing it requires 2^{Omega(n)} size. 2. Any multilinear depth three circuit computing IMM_{n,d} (the iterated matrix multiplication polynomial formed by multiplying d, n * n symbolic matrices) has n^{Omega(d)} size. IMM_{n,d} can be easily computed by a poly(n,d) sized ROABP. 3. Further, the proof of 2 yields an exponential separation between multilinear depth four and multilinear depth three circuits: There is an explicit n-variate, degree d polynomial computable by a poly(n,d) sized multilinear depth four circuit such that any multilinear depth three circuit computing it has size n^{Omega(d)}. This improves upon the quasi-polynomial separation result by Raz and Yehudayoff [2009] between these two models. The hard polynomial in 1 is constructed using a novel application of expander graphs in conjunction with the evaluation dimension measure used previously in Nisan [1991], Raz [2006,2009], Raz and Yehudayoff [2009], and Forbes and Shpilka [2013], while 2 is proved via a new adaptation of the dimension of the partial derivatives measure used by Nisan and Wigderson [1997]. Our lower bounds hold over any field

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developments are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes

    Deterministic Black-Box Identity Testing π\pi-Ordered Algebraic Branching Programs

    Get PDF
    In this paper we study algebraic branching programs (ABPs) with restrictions on the order and the number of reads of variables in the program. Given a permutation π\pi of nn variables, for a π\pi-ordered ABP (π\pi-OABP), for any directed path pp from source to sink, a variable can appear at most once on pp, and the order in which variables appear on pp must respect π\pi. An ABP AA is said to be of read rr, if any variable appears at most rr times in AA. Our main result pertains to the identity testing problem. Over any field FF and in the black-box model, i.e. given only query access to the polynomial, we have the following result: read rr π\pi-OABP computable polynomials can be tested in \DTIME[2^{O(r\log r \cdot \log^2 n \log\log n)}]. Our next set of results investigates the computational limitations of OABPs. It is shown that any OABP computing the determinant or permanent requires size Ω(2n/n)\Omega(2^n/n) and read Ω(2n/n2)\Omega(2^n/n^2). We give a multilinear polynomial pp in 2n+12n+1 variables over some specifically selected field GG, such that any OABP computing pp must read some variable at least 2n2^n times. We show that the elementary symmetric polynomial of degree rr in nn variables can be computed by a size O(rn)O(rn) read rr OABP, but not by a read (r1)(r-1) OABP, for any 0<2r1n0 < 2r-1 \leq n. Finally, we give an example of a polynomial pp and two variables orders ππ\pi \neq \pi', such that pp can be computed by a read-once π\pi-OABP, but where any π\pi'-OABP computing pp must read some variable at least $2^n

    Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits

    Get PDF
    We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)
    corecore