339,336 research outputs found

    03a - Uninformed search (handouts)

    Get PDF

    Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks

    Full text link
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems

    Bidirectional Heuristic Search Reconsidered

    Full text link
    The assessment of bidirectional heuristic search has been incorrect since it was first published more than a quarter of a century ago. For quite a long time, this search strategy did not achieve the expected results, and there was a major misunderstanding about the reasons behind it. Although there is still wide-spread belief that bidirectional heuristic search is afflicted by the problem of search frontiers passing each other, we demonstrate that this conjecture is wrong. Based on this finding, we present both a new generic approach to bidirectional heuristic search and a new approach to dynamically improving heuristic values that is feasible in bidirectional search only. These approaches are put into perspective with both the traditional and more recently proposed approaches in order to facilitate a better overall understanding. Empirical results of experiments with our new approaches show that bidirectional heuristic search can be performed very efficiently and also with limited memory. These results suggest that bidirectional heuristic search appears to be better for solving certain difficult problems than corresponding unidirectional search. This provides some evidence for the usefulness of a search strategy that was long neglected. In summary, we show that bidirectional heuristic search is viable and consequently propose that it be reconsidered.Comment: See http://www.jair.org/ for any accompanying file

    Specialization effect and its influence on memory and problem solving in expert chess players

    Get PDF
    Expert chess players, specialized in different openings, recalled positions and solved problems within and outside their area of specialization. While their general expertise was at a similar level players performed better with stimuli from their area of specialization. The effect of specialization on both recall and problem solving was strong enough to override general expertise – players remembering positions and solving problems from their area of specialization performed at around the level of players one standard deviation above them in general skill. Their problem solving strategy also changed depending on whether the problem was within their area of specialization or not. When it was, they searched more in depth and less in breadth; with problems outside their area of specialization, the reverse. The knowledge that comes from familiarity with a problem area is more important than general purpose strategies in determining how an expert will tackle it. These results demonstrate the link in experts between problem solving and memory of specific experiences and indicate that the search for context independent general purpose problem solving strategies to teach to future experts is unlikely to be successful

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data
    • …
    corecore