89,699 research outputs found

    Depth-enhanced maximum intensity projection

    Get PDF
    The two most common methods for the visualization of volumetric data are Direct Volume Rendering (DVR) and Maximum Intensity Projection (MIP). Direct Volume Rendering is superior to MIP in providing a larger amount of properly shaded details, because it employs a more complex shading model together with the use of user-defined transfer functions. However, the generation of adequate transfer functions is a laborious and time costly task, even for expert users. As a consequence, medical doctors often use MIP because it does not require the definition of complex transfer functions and because it gives good results on contrasted images. Unfortunately, MIP does not allow to perceive depth ordering and therefore spatial context is lost. In this paper we present a new approach to MIP rendering that uses depth and simple color blending to disambiguate the ordering of internal structures, while maintaining most of the details visible through MIP. It is usually faster than DVR and only requires the transfer function used by MIP rendering.Peer ReviewedPostprint (author’s final draft

    Inverse Design of Perfectly Transmitting Eigenchannels in Scattering Media

    Get PDF
    Light-matter interactions inside turbid medium can be controlled by tailoring the spatial distribution of energy density throughout the system. Wavefront shaping allows selective coupling of incident light to different transmission eigenchannels, producing dramatically different spatial intensity profiles. In contrast to the density of transmission eigenvalues that is dictated by the universal bimodal distribution, the spatial structures of the eigenchannels are not universal and depend on the confinement geometry of the system. Here, we develop and verify a model for the transmission eigenchannel with the corresponding eigenvalue close to unity. By projecting the original problem of two-dimensional diffusion in a homogeneous scattering medium onto a one-dimensional inhomogeneous diffusion, we obtain an analytical expression relating the intensity profile to the shape of the confining waveguide. Inverting this relationship enables the inverse design of the waveguide shape to achieve the desired energy distribution for the perfectly transmitting eigenchannel. Our approach also allows to predict the intensity profile of such channel in a disordered slab with open boundaries, pointing to the possibility of controllable delivery of light to different depths with local illumination.Comment: 9 pages, 6 figure

    Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    Get PDF
    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum-optics in photonic band-gap crystals and for applications wherein directional emission and total emission power are controlled.Comment: 10 pages, 10 figures, corrected pdf, inserted new referenc

    Dust Streamers in the Virgo Galaxy M86 from Ram Pressure Stripping of its Companion VCC 882

    Get PDF
    The giant elliptical galaxy M86 in Virgo has a ~28 kpc long dust trail inside its optical halo that points toward the nucleated dwarf elliptical galaxy, VCC 882. The trail seems to be stripped material from the dwarf. Extinction measurements suggest that the ratio of the total gas mass in the trail to the blue luminosity of the dwarf is about unity, which is comparable to such ratios in dwarf irregular galaxies. The ram pressure experienced by the dwarf galaxy in the hot gaseous halo of M86 was comparable to the internal gravitational binding energy density of the presumed former gas disk in VCC 882. Published numerical models of this case are consistent with the overall trail-like morphology observed here. Three concentrations in the trail may be evidence for the predicted periodicity of the mass loss. The evaporation time of the trail is comparable to the trail age obtained from the relative speed of the galaxies and the trail length. Thus the trail could be continuously formed from stripped replenished gas if the VCC 882 orbit is bound. However, the high gas mass and the low expected replenishment rate suggest that this is only the first stripping event. Implications for the origin of nucleated dwarf ellipticals are briefly discussed.Comment: 22 pages, 7 figures, Astronomical Journal, August 2000, in pres

    Molecular Emission Line Formation in Prestellar Cores

    Full text link
    We investigate general aspects of molecular line formation under conditions which are typical of prestellar cores. Focusing on simple linear molecules, we study formation of their rotational lines by radiative transfer simulations. We present a thermalization diagram to show the effects of collisions and radiation on the level excitation. We construct a detailed scheme (contribution chart) to illustrate the formation of emission line profiles. This chart can be used as an efficient tool to identify which parts of the cloud contribute to a specific line profile. We show how molecular line characteristics for uniform model clouds depend on hydrogen density, molecular column density, and kinetic temperature. The results are presented in a 2D plane to illustrate cooperative effects of the physical factors. We also use a core model with a non-uniform density distribution and chemical stratification to study the effects of cloud contraction and rotation on spectral line maps. We discuss the main issues that should be taken into account when dealing with interpretation and simulation of observed molecular lines.Comment: Accepted for publication in Ap

    Phase-Retrieved Tomography enables imaging of a Tumor Spheroid in Mesoscopy Regime

    Get PDF
    Optical tomographic imaging of biological specimen bases its reliability on the combination of both accurate experimental measures and advanced computational techniques. In general, due to high scattering and absorption in most of the tissues, multi view geometries are required to reduce diffuse halo and blurring in the reconstructions. Scanning processes are used to acquire the data but they inevitably introduces perturbation, negating the assumption of aligned measures. Here we propose an innovative, registration free, imaging protocol implemented to image a human tumor spheroid at mesoscopic regime. The technique relies on the calculation of autocorrelation sinogram and object autocorrelation, finalizing the tomographic reconstruction via a three dimensional Gerchberg Saxton algorithm that retrieves the missing phase information. Our method is conceptually simple and focuses on single image acquisition, regardless of the specimen position in the camera plane. We demonstrate increased deep resolution abilities, not achievable with the current approaches, rendering the data alignment process obsolete.Comment: 21 pages, 5 figure

    Beyond backscattering: Optical neuroimaging by BRAD

    Full text link
    Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked up by the different modes of a FMF depending upon the angular scattering pattern, we obtain access to the directional scattering signatures of different tissues by decoupling illumination and detection paths. We exploit the distinct modal propagation properties of the FMF in concert with the long coherence lengths provided by modern wavelength-swept lasers to achieve multiplexing of the different modal responses into a combined OCT tomogram. We demonstrate BRAD sensing for distinguishing differently sized microparticles and showcase the performance of BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in glioblastoma and neuritic plaques in Alzheimer's disease
    • …
    corecore