24 research outputs found

    Reliability measure for shape-from-focus

    Full text link
    This is the author’s version of a work that was accepted for publication in Journal Image and Vision Computing . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal Image and Vision Computing , 31, 10 (2013) DOI: 10.1016/j.imavis.2013.07.005Shape-from-focus (SFF) is a passive technique widely used in image processing for obtaining depth-maps. This technique is attractive since it only requires a single monocular camera with focus control, thus avoiding correspondence problems typically found in stereo, as well as more expensive capturing devices. However, one of its main drawbacks is its poor performance when the change in the focus level is difficult to detect. Most research in SFF has focused on improving the accuracy of the depth estimation. Less attention has been paid to the problem of providing quality measures in order to predict the performance of SFF without prior knowledge of the recovered scene. This paper proposes a reliability measure aimed at assessing the quality of the depth-map obtained using SFF. The proposed reliability measure (the R-measure) analyses the shape of the focus measure function and estimates the likelihood of obtaining an accurate depth estimation without any previous knowledge of the recovered scene. The proposed R-measure is then applied for determining the image regions where SFF will not perform correctly in order to discard them. Experiments with both synthetic and real scenes are presented

    Depth Map Estimation Using Multi-focus Imaging

    Get PDF
    In this thesis, three different depth map estimation techniques are presented. The first method uses SUSAN operator to detects the features, followed by an exponentially decaying function is employed to transfer the distance of the detected features by giving more weight to the nearer vicinity pixels of feature points, which helps to measure the clarity and depth of pixels. A robust, dual-tree complex wavelets and distance transformation based framework is developed for depth map estimation in second focus measure technique. The shift-invariance and better directionality of dual-tree complex wavelets helps to detects the features efficiently, which helps to estimate the depth of the scene more precisely. In third depth map estimation technique, focus measure is ensure by measuring local orientation energy using a quadrature pair of steerable filters of the detected features. The experiments and results validates the effectiveness of proposed feature based depth map estimation approach

    Modeling and applications of the focus cue in conventional digital cameras

    Get PDF
    El enfoque en cámaras digitales juega un papel fundamental tanto en la calidad de la imagen como en la percepción del entorno. Esta tesis estudia el enfoque en cámaras digitales convencionales, tales como cámaras de móviles, fotográficas, webcams y similares. Una revisión rigurosa de los conceptos teóricos detras del enfoque en cámaras convencionales muestra que, a pasar de su utilidad, el modelo clásico del thin lens presenta muchas limitaciones para aplicación en diferentes problemas relacionados con el foco. En esta tesis, el focus profile es propuesto como una alternativa a conceptos clásicos como la profundidad de campo. Los nuevos conceptos introducidos en esta tesis son aplicados a diferentes problemas relacionados con el foco, tales como la adquisición eficiente de imágenes, estimación de profundidad, integración de elementos perceptuales y fusión de imágenes. Los resultados experimentales muestran la aplicación exitosa de los modelos propuestos.The focus of digital cameras plays a fundamental role in both the quality of the acquired images and the perception of the imaged scene. This thesis studies the focus cue in conventional cameras with focus control, such as cellphone cameras, photography cameras, webcams and the like. A deep review of the theoretical concepts behind focus in conventional cameras reveals that, despite its usefulness, the widely known thin lens model has several limitations for solving different focus-related problems in computer vision. In order to overcome these limitations, the focus profile model is introduced as an alternative to classic concepts, such as the near and far limits of the depth-of-field. The new concepts introduced in this dissertation are exploited for solving diverse focus-related problems, such as efficient image capture, depth estimation, visual cue integration and image fusion. The results obtained through an exhaustive experimental validation demonstrate the applicability of the proposed models

    Retinal blood vessel segmentation: methods and implementations

    Get PDF
    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic or computer-aided diagnosis systems. This thesis, therefore, has investigated different works of image segmentation algorithms and techniques, including unsupervised and supervised methods. Further, the thesis has developed and implemented two systems of the accurate retinal vessel segmentation. The methodologies explained and analyzed in this thesis, have been selected as the most efficient approaches to achieve higher precision, better robustness, and faster execution speed, to meet the strict standard of the modern medical imaging. Based on the intensive investigation and experiments, this thesis has proposed two outstanding implementations of the retinal blood vessel segmentation. The first implementation focuses on the fast, accurate and robust extraction of the retinal vessels using unsupervised techniques, by applying morphology-based global thresholding to draw the retinal venule structure and centerline detection to extract the capillaries. Besides, this system has been designed to minimize the computing complexity and to process multiple independent procedures in parallel. The second proposed system has especially focused on robustness and accuracy in regardless of execution time. This method has utilized the full convolutional neural network trained from a pre-trained semantic segmentation model, which is also called the transfer deep learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition. Both of the implementations have outperformed their related works and have presented a remarkable scientific value for future computer-aided diagnosis applications. What’s more, this thesis is also a research guide which provide readers with the comprehensive knowledge on how to research on the task of retinal vessel segmentation

    Retinal blood vessel segmentation: methods and implementations

    Get PDF
    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic or computer-aided diagnosis systems. This thesis, therefore, has investigated different works of image segmentation algorithms and techniques, including unsupervised and supervised methods. Further, the thesis has developed and implemented two systems of the accurate retinal vessel segmentation. The methodologies explained and analyzed in this thesis, have been selected as the most efficient approaches to achieve higher precision, better robustness, and faster execution speed, to meet the strict standard of the modern medical imaging. Based on the intensive investigation and experiments, this thesis has proposed two outstanding implementations of the retinal blood vessel segmentation. The first implementation focuses on the fast, accurate and robust extraction of the retinal vessels using unsupervised techniques, by applying morphology-based global thresholding to draw the retinal venule structure and centerline detection to extract the capillaries. Besides, this system has been designed to minimize the computing complexity and to process multiple independent procedures in parallel. The second proposed system has especially focused on robustness and accuracy in regardless of execution time. This method has utilized the full convolutional neural network trained from a pre-trained semantic segmentation model, which is also called the transfer deep learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition. Both of the implementations have outperformed their related works and have presented a remarkable scientific value for future computer-aided diagnosis applications. What’s more, this thesis is also a research guide which provide readers with the comprehensive knowledge on how to research on the task of retinal vessel segmentation

    Retinal blood vessel segmentation: methods and implementations

    Get PDF
    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic or computer-aided diagnosis systems. This thesis, therefore, has investigated different works of image segmentation algorithms and techniques, including unsupervised and supervised methods. Further, the thesis has developed and implemented two systems of the accurate retinal vessel segmentation. The methodologies explained and analyzed in this thesis, have been selected as the most efficient approaches to achieve higher precision, better robustness, and faster execution speed, to meet the strict standard of the modern medical imaging. Based on the intensive investigation and experiments, this thesis has proposed two outstanding implementations of the retinal blood vessel segmentation. The first implementation focuses on the fast, accurate and robust extraction of the retinal vessels using unsupervised techniques, by applying morphology-based global thresholding to draw the retinal venule structure and centerline detection to extract the capillaries. Besides, this system has been designed to minimize the computing complexity and to process multiple independent procedures in parallel. The second proposed system has especially focused on robustness and accuracy in regardless of execution time. This method has utilized the full convolutional neural network trained from a pre-trained semantic segmentation model, which is also called the transfer deep learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition. Both of the implementations have outperformed their related works and have presented a remarkable scientific value for future computer-aided diagnosis applications. What’s more, this thesis is also a research guide which provide readers with the comprehensive knowledge on how to research on the task of retinal vessel segmentation

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Polyp Segmentation in Colonoscopy Images with Convolutional Neural Networks

    Get PDF
    The thesis looks at approaches to segmentation of polyps in colonoscopy images. The aim was to investigate and develop methods that are robust, accurate and computationally efficient and which can compete with the current state-of-the-art in polyp segmentation. Colorectal cancer is one of the leading cause of cancer deaths worldwide. To decrease mortality, an assessment of polyp malignancy is performed during colonoscopy examination so polyps can be removed at an early stage. In current routine clinical practice, polyps are detected and delineated manually in colonoscopy images by highly trained clinicians. To automate these processes, machine learning and computer vision techniques have been utilised. They have been shown to improve polyp detectability and segmentation objectivity. However, polyp segmentation is a very challenging task due to inherent variability of polyp morphology and colonoscopy image appearance. This research considers a range of approaches to polyp segmentation – seeking out those that offer a best compromise between accuracy and computational complexity. Based on analysis of existing machine learning and polyp image segmentation techniques, a novel hybrid deep learning segmentation method is proposed to alleviate the impact of the above stated challenges on polyp segmentation. The method consists of two fully convolutional networks. The first proposed network is based on a compact architecture with large receptive fields and multiple classification paths. The method performs well on most images, accurately segmenting polyps of diverse morphology and appearance. However, this network is prone to misdetection of very small polyps. To solve this problem, a second network is proposed, which primarily aims to improve sensitivity to small polyp details by emphasising low-level image features. In order to fully utilise information contained in the available training dataset, comprehensive data augmentation techniques are adopted. To further improve the performance of the proposed segmentation methods, test-time data augmentation is also implemented. A comprehensive multi-criterion analysis of the proposed methods is provided. The result demonstrates that the new methodology has better accuracy and robustness than the current state-of-the-art, as proven by the outstanding performance at the 2017 and 2018 GIANA polyp segmentation challenges

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition
    corecore