39,725 research outputs found

    Indoor Depth Completion with Boundary Consistency and Self-Attention

    Full text link
    Depth estimation features are helpful for 3D recognition. Commodity-grade depth cameras are able to capture depth and color image in real-time. However, glossy, transparent or distant surface cannot be scanned properly by the sensor. As a result, enhancement and restoration from sensing depth is an important task. Depth completion aims at filling the holes that sensors fail to detect, which is still a complex task for machine to learn. Traditional hand-tuned methods have reached their limits, while neural network based methods tend to copy and interpolate the output from surrounding depth values. This leads to blurred boundaries, and structures of the depth map are lost. Consequently, our main work is to design an end-to-end network improving completion depth maps while maintaining edge clarity. We utilize self-attention mechanism, previously used in image inpainting fields, to extract more useful information in each layer of convolution so that the complete depth map is enhanced. In addition, we propose boundary consistency concept to enhance the depth map quality and structure. Experimental results validate the effectiveness of our self-attention and boundary consistency schema, which outperforms previous state-of-the-art depth completion work on Matterport3D dataset. Our code is publicly available at https://github.com/patrickwu2/Depth-CompletionComment: Accepted by ICCVW (RLQ) 201

    Real-time Model-based Image Color Correction for Underwater Robots

    Full text link
    Recently, a new underwater imaging formation model presented that the coefficients related to the direct and backscatter transmission signals are dependent on the type of water, camera specifications, water depth, and imaging range. This paper proposes an underwater color correction method that integrates this new model on an underwater robot, using information from a pressure depth sensor for water depth and a visual odometry system for estimating scene distance. Experiments were performed with and without a color chart over coral reefs and a shipwreck in the Caribbean. We demonstrate the performance of our proposed method by comparing it with other statistic-, physic-, and learning-based color correction methods. Applications for our proposed method include improved 3D reconstruction and more robust underwater robot navigation.Comment: Accepted at the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network

    Full text link
    Depth estimation from a single image is a fundamental problem in computer vision. In this paper, we propose a simple yet effective convolutional spatial propagation network (CSPN) to learn the affinity matrix for depth prediction. Specifically, we adopt an efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operation, and the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). We apply the designed CSPN to two depth estimation tasks given a single image: (1) To refine the depth output from state-of-the-art (SOTA) existing methods; and (2) to convert sparse depth samples to a dense depth map by embedding the depth samples within the propagation procedure. The second task is inspired by the availability of LIDARs that provides sparse but accurate depth measurements. We experimented the proposed CSPN over two popular benchmarks for depth estimation, i.e. NYU v2 and KITTI, where we show that our proposed approach improves in not only quality (e.g., 30% more reduction in depth error), but also speed (e.g., 2 to 5 times faster) than prior SOTA methods.Comment: 14 pages, 8 figures, ECCV 201
    • …
    corecore