853,470 research outputs found

    Depth Assisted Full Resolution Network for Single Image-based View Synthesis

    Full text link
    Researches in novel viewpoint synthesis majorly focus on interpolation from multi-view input images. In this paper, we focus on a more challenging and ill-posed problem that is to synthesize novel viewpoints from one single input image. To achieve this goal, we propose a novel deep learning-based technique. We design a full resolution network that extracts local image features with the same resolution of the input, which contributes to derive high resolution and prevent blurry artifacts in the final synthesized images. We also involve a pre-trained depth estimation network into our system, and thus 3D information is able to be utilized to infer the flow field between the input and the target image. Since the depth network is trained by depth order information between arbitrary pairs of points in the scene, global image features are also involved into our system. Finally, a synthesis layer is used to not only warp the observed pixels to the desired positions but also hallucinate the missing pixels with recorded pixels. Experiments show that our technique performs well on images of various scenes, and outperforms the state-of-the-art techniques

    Depth Acquisition from Digital Images

    Get PDF
    Introduction: Depth acquisition from digital images captured with a conventional camera, by analysing focus/defocus cues which are related to depth via an optical model of the camera, is a popular approach to depth-mapping a 3D scene. The majority of methods analyse the neighbourhood of a point in an image to infer its depth, which has disadvantages. A more elegant, but more difficult, solution is to evaluate only the single pixel displaying a point in order to infer its depth. This thesis investigates if a per-pixel method can be implemented without compromising accuracy and generality compared to window-based methods, whilst minimising the number of input images. Method: A geometric optical model of the camera was used to predict the relationship between focus/defocus and intensity at a pixel. Using input images with different focus settings, the relationship was used to identify the focal plane depth (i.e. focus setting) where a point is in best focus, from which the depth of the point can be resolved if camera parameters are known. Two metrics were implemented, one to identify the best focus setting for a point from the discrete input set, and one to fit a model to the input data to estimate the depth of perfect focus of the point on a continuous scale. Results: The method gave generally accurate results for a simple synthetic test scene, with a relatively low number of input images compared to similar methods. When tested on a more complex scene, the method achieved its objectives of separating complex objects from the background by depth, and produced a similar resolution of a complex 3D surface as a similar method which used significantly more input data. Conclusions: The method demonstrates that it is possible to resolve depth on a per-pixel basis without compromising accuracy and generality, and using a similar amount of input data, compared to more traditional window-based methods. In practice, the presented method offers a convenient new option for depth-based image processing applications, as the depth-map is per-pixel, but the process of capturing and preparing images for the method is not too practically cumbersome and could be easily automated unlike other per-pixel methods reviewed. However, the method still suffers from the general limitations of the depth acquisition approach using images from a conventional camera, which limits its use as a general depth acquisition solution beyond specifically depth-based image processing applications

    초점 스택에서 3D 깊이 재구성 및 깊이 개선

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2021. 2. 신영길.Three-dimensional (3D) depth recovery from two-dimensional images is a fundamental and challenging objective in computer vision, and is one of the most important prerequisites for many applications such as 3D measurement, robot location and navigation, self-driving, and so on. Depth-from-focus (DFF) is one of the important methods to reconstruct a 3D depth in the use of focus information. Reconstructing a 3D depth from texture-less regions is a typical issue associated with the conventional DFF. Further more, it is difficult for the conventional DFF reconstruction techniques to preserve depth edges and fine details while maintaining spatial consistency. In this dissertation, we address these problems and propose an DFF depth recovery framework which is robust over texture-less regions, and can reconstruct a depth image with clear edges and fine details. The depth recovery framework proposed in this dissertation is composed of two processes: depth reconstruction and depth refinement. To recovery an accurate 3D depth, We first formulate the depth reconstruction as a maximum a posterior (MAP) estimation problem with the inclusion of matting Laplacian prior. The nonlocal principle is adopted during the construction stage of the matting Laplacian matrix to preserve depth edges and fine details. Additionally, a depth variance based confidence measure with the combination of the reliability measure of focus measure is proposed to maintain the spatial smoothness, such that the smooth depth regions in initial depth could have high confidence value and the reconstructed depth could be more derived from the initial depth. As the nonlocal principle breaks the spatial consistency, the reconstructed depth image is spatially inconsistent. Meanwhile, it suffers from texture-copy artifacts. To smooth the noise and suppress the texture-copy artifacts introduced in the reconstructed depth image, we propose a closed-form edge-preserving depth refinement algorithm that formulates the depth refinement as a MAP estimation problem using Markov random fields (MRFs). With the incorporation of pre-estimated depth edges and mutual structure information into our energy function and the specially designed smoothness weight, the proposed refinement method can effectively suppress noise and texture-copy artifacts while preserving depth edges. Additionally, with the construction of undirected weighted graph representing the energy function, a closed-form solution is obtained by using the Laplacian matrix corresponding to the graph. The proposed framework presents a novel method of 3D depth recovery from a focal stack. The proposed algorithm shows the superiority in depth recovery over texture-less regions owing to the effective variance based confidence level computation and the matting Laplacian prior. Additionally, this proposed reconstruction method can obtain a depth image with clear edges and fine details due to the adoption of nonlocal principle in the construct]ion of matting Laplacian matrix. The proposed closed-form depth refinement approach shows that the ability in noise removal while preserving object structure with the usage of common edges. Additionally, it is able to effectively suppress texture-copy artifacts by utilizing mutual structure information. The proposed depth refinement provides a general idea for edge-preserving image smoothing, especially for depth related refinement such as stereo vision. Both quantitative and qualitative experimental results show the supremacy of the proposed method in terms of robustness in texture-less regions, accuracy, and ability to preserve object structure while maintaining spatial smoothness.Chapter 1 Introduction 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Related Works 9 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Principle of depth-from-focus . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Focus measure operators . . . . . . . . . . . . . . . . . . . 12 2.3 Depth-from-focus reconstruction . . . . . . . . . . . . . . . . . . 14 2.4 Edge-preserving image denoising . . . . . . . . . . . . . . . . . . 23 Chapter 3 Depth-from-Focus Reconstruction using Nonlocal Matting Laplacian Prior 38 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Image matting and matting Laplacian . . . . . . . . . . . . . . . 40 3.3 Depth-from-focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Depth reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Likelihood model . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 Nonlocal matting Laplacian prior model . . . . . . . . . . 50 3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Data configuration . . . . . . . . . . . . . . . . . . . . . . 55 3.5.3 Reconstruction results . . . . . . . . . . . . . . . . . . . . 56 3.5.4 Comparison between reconstruction using local and nonlocal matting Laplacian . . . . . . . . . . . . . . . . . . . 56 3.5.5 Spatial consistency analysis . . . . . . . . . . . . . . . . . 59 3.5.6 Parameter setting and analysis . . . . . . . . . . . . . . . 59 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter 4 Closed-form MRF-based Depth Refinement 63 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Closed-form solution . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 Edge preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Texture-copy artifacts suppression . . . . . . . . . . . . . . . . . 73 4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter 5 Evaluation 82 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 Evaluation on synthetic datasets . . . . . . . . . . . . . . . . . . 84 5.4 Evaluation on real scene datasets . . . . . . . . . . . . . . . . . . 89 5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6 Computational performances . . . . . . . . . . . . . . . . . . . . 93 Chapter 6 Conclusion 96 Bibliography 99Docto

    Panoramic Depth Imaging: Single Standard Camera Approach

    Get PDF
    In this paper we present a panoramic depth imaging system. The system is mosaic-based which means that we use a single rotating camera and assemble the captured images in a mosaic. Due to a setoff of the camera’s optical center from the rotational center of the system we are able to capture the motion parallax effect which enables stereo reconstruction. The camera is rotating on a circular path with a step defined by the angle, equivalent to one pixel column of the captured image. The equation for depth estimation can be easily extracted from the system geometry. To find the corresponding points on a stereo pair of panoramic images the epipolar geometry needs to be determined. It can be shown that the epipolar geometry is very simple if we are doing the reconstruction based on a symmetric pair of stereo panoramic images. We get a symmetric pair of stereo panoramic images when we take symmetric pixel columns on the left and on the right side from the captured image center column. Epipolar lines of the symmetrical pair of panoramic images are image rows. The search space on the epipolar line can be additionaly constrained. The focus of the paper is mainly on the system analysis. Results of the stereo reconstruction procedure and quality evaluation of generated depth images are quite promissing. The system performs well for reconstruction of small indoor spaces. Our finall goal is to develop a system for automatic navigation of a mobile robot in a room

    Reliability measure for shape-from-focus

    Full text link
    This is the author’s version of a work that was accepted for publication in Journal Image and Vision Computing . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal Image and Vision Computing , 31, 10 (2013) DOI: 10.1016/j.imavis.2013.07.005Shape-from-focus (SFF) is a passive technique widely used in image processing for obtaining depth-maps. This technique is attractive since it only requires a single monocular camera with focus control, thus avoiding correspondence problems typically found in stereo, as well as more expensive capturing devices. However, one of its main drawbacks is its poor performance when the change in the focus level is difficult to detect. Most research in SFF has focused on improving the accuracy of the depth estimation. Less attention has been paid to the problem of providing quality measures in order to predict the performance of SFF without prior knowledge of the recovered scene. This paper proposes a reliability measure aimed at assessing the quality of the depth-map obtained using SFF. The proposed reliability measure (the R-measure) analyses the shape of the focus measure function and estimates the likelihood of obtaining an accurate depth estimation without any previous knowledge of the recovered scene. The proposed R-measure is then applied for determining the image regions where SFF will not perform correctly in order to discard them. Experiments with both synthetic and real scenes are presented

    Depth Estimation and Image Restoration by Deep Learning from Defocused Images

    Full text link
    Monocular depth estimation and image deblurring are two fundamental tasks in computer vision, given their crucial role in understanding 3D scenes. Performing any of them by relying on a single image is an ill-posed problem. The recent advances in the field of Deep Convolutional Neural Networks (DNNs) have revolutionized many tasks in computer vision, including depth estimation and image deblurring. When it comes to using defocused images, the depth estimation and the recovery of the All-in-Focus (Aif) image become related problems due to defocus physics. Despite this, most of the existing models treat them separately. There are, however, recent models that solve these problems simultaneously by concatenating two networks in a sequence to first estimate the depth or defocus map and then reconstruct the focused image based on it. We propose a DNN that solves the depth estimation and image deblurring in parallel. Our Two-headed Depth Estimation and Deblurring Network (2HDED:NET) extends a conventional Depth from Defocus (DFD) networks with a deblurring branch that shares the same encoder as the depth branch. The proposed method has been successfully tested on two benchmarks, one for indoor and the other for outdoor scenes: NYU-v2 and Make3D. Extensive experiments with 2HDED:NET on these benchmarks have demonstrated superior or close performances to those of the state-of-the-art models for depth estimation and image deblurring

    Novel Approaches for Regional Multifocus Image Fusion

    Get PDF
    Image fusion is a research topic about combining information from multiple images into one fused image. Although a large number of methods have been proposed, many challenges remain in obtaining clearer resulting images with higher quality. This chapter addresses the multifocus image fusion problem about extending the depth of field by fusing several images of the same scene with different focuses. Existing research in multifocus image fusion tends to emphasis on the pixel-level image fusion using transform domain methods. The region-level image fusion methods, especially the ones using new coding techniques, are still limited. In this chapter, we provide an overview of regional multi-focus image fusion, and two different orthogonal matching pursuit-based sparse representation methods are adopted for regional multi-focus image fusion. Experiment results show that the regional image fusion using sparse representation can achieve a comparable even better performance for multifocus image fusion problems
    corecore