8,676 research outputs found

    Depth as randomness deficiency

    Get PDF

    Depth as Randomness Deficiency

    Get PDF
    Depth of an object concerns a tradeoff between computation time and excess of program length over the shortest program length required to obtain the object. It gives an unconditional lower bound on the computation time from a given program in absence of auxiliary information. Variants known as logical depth and computational depth are expressed in Kolmogorov complexity theory. We derive quantitative relation between logical depth and computational depth and unify the different depth notions by relating them to A. Kolmogorov and L. Levin’s fruitful notion of randomness deficiency. Subsequently, we revisit the computational depth of infinite strings, study the notion of super deep sequences and relate it with other approaches

    Relating and contrasting plain and prefix Kolmogorov complexity

    Get PDF
    In [3] a short proof is given that some strings have maximal plain Kolmogorov complexity but not maximal prefix-free complexity. The proof uses Levin's symmetry of information, Levin's formula relating plain and prefix complexity and Gacs' theorem that complexity of complexity given the string can be high. We argue that the proof technique and results mentioned above are useful to simplify existing proofs and to solve open questions. We present a short proof of Solovay's result [21] relating plain and prefix complexity: K(x)=C(x)+CC(x)+O(CCC(x))K (x) = C (x) + CC (x) + O(CCC (x)) and C(x)=K(x)KK(x)+O(KKK(x))C (x) = K (x) - KK (x) + O(KKK (x)), (here CC(x)CC(x) denotes C(C(x))C(C(x)), etc.). We show that there exist ω\omega such that lim infC(ω1ωn)C(n)\liminf C(\omega_1\dots \omega_n) - C(n) is infinite and lim infK(ω1ωn)K(n)\liminf K(\omega_1\dots \omega_n) - K(n) is finite, i.e. the infinitely often C-trivial reals are not the same as the infinitely often K-trivial reals (i.e. [1,Question 1]). Solovay showed that for infinitely many xx we have xC(x)O(1)|x| - C (x) \le O(1) and x+K(x)K(x)log(2)xO(log(3)x)|x| + K (|x|) - K (x) \ge \log^{(2)} |x| - O(\log^{(3)} |x|), (here x|x| denotes the length of xx and log(2)=loglog\log^{(2)} = \log\log, etc.). We show that this result holds for prefixes of some 2-random sequences. Finally, we generalize our proof technique and show that no monotone relation exists between expectation and probability bounded randomness deficiency (i.e. [6, Question 1]).Comment: 20 pages, 1 figur

    On Algorithmic Statistics for space-bounded algorithms

    Full text link
    Algorithmic statistics studies explanations of observed data that are good in the algorithmic sense: an explanation should be simple i.e. should have small Kolmogorov complexity and capture all the algorithmically discoverable regularities in the data. However this idea can not be used in practice because Kolmogorov complexity is not computable. In this paper we develop algorithmic statistics using space-bounded Kolmogorov complexity. We prove an analogue of one of the main result of `classic' algorithmic statistics (about the connection between optimality and randomness deficiences). The main tool of our proof is the Nisan-Wigderson generator.Comment: accepted to CSR 2017 conferenc

    Algorithmic statistics: forty years later

    Full text link
    Algorithmic statistics has two different (and almost orthogonal) motivations. From the philosophical point of view, it tries to formalize how the statistics works and why some statistical models are better than others. After this notion of a "good model" is introduced, a natural question arises: it is possible that for some piece of data there is no good model? If yes, how often these bad ("non-stochastic") data appear "in real life"? Another, more technical motivation comes from algorithmic information theory. In this theory a notion of complexity of a finite object (=amount of information in this object) is introduced; it assigns to every object some number, called its algorithmic complexity (or Kolmogorov complexity). Algorithmic statistic provides a more fine-grained classification: for each finite object some curve is defined that characterizes its behavior. It turns out that several different definitions give (approximately) the same curve. In this survey we try to provide an exposition of the main results in the field (including full proofs for the most important ones), as well as some historical comments. We assume that the reader is familiar with the main notions of algorithmic information (Kolmogorov complexity) theory.Comment: Missing proofs adde

    Algorithmic statistics revisited

    Full text link
    The mission of statistics is to provide adequate statistical hypotheses (models) for observed data. But what is an "adequate" model? To answer this question, one needs to use the notions of algorithmic information theory. It turns out that for every data string xx one can naturally define "stochasticity profile", a curve that represents a trade-off between complexity of a model and its adequacy. This curve has four different equivalent definitions in terms of (1)~randomness deficiency, (2)~minimal description length, (3)~position in the lists of simple strings and (4)~Kolmogorov complexity with decompression time bounded by busy beaver function. We present a survey of the corresponding definitions and results relating them to each other

    Algorithmic statistics, prediction and machine learning

    Get PDF
    Algorithmic statistics considers the following problem: given a binary string xx (e.g., some experimental data), find a "good" explanation of this data. It uses algorithmic information theory to define formally what is a good explanation. In this paper we extend this framework in two directions. First, the explanations are not only interesting in themselves but also used for prediction: we want to know what kind of data we may reasonably expect in similar situations (repeating the same experiment). We show that some kind of hierarchy can be constructed both in terms of algorithmic statistics and using the notion of a priori probability, and these two approaches turn out to be equivalent. Second, a more realistic approach that goes back to machine learning theory, assumes that we have not a single data string xx but some set of "positive examples" x1,,xlx_1,\ldots,x_l that all belong to some unknown set AA, a property that we want to learn. We want this set AA to contain all positive examples and to be as small and simple as possible. We show how algorithmic statistic can be extended to cover this situation.Comment: 22 page

    The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy

    Full text link
    The principle of maximum entropy (Maxent) is often used to obtain prior probability distributions as a method to obtain a Gibbs measure under some restriction giving the probability that a system will be in a certain state compared to the rest of the elements in the distribution. Because classical entropy-based Maxent collapses cases confounding all distinct degrees of randomness and pseudo-randomness, here we take into consideration the generative mechanism of the systems considered in the ensemble to separate objects that may comply with the principle under some restriction and whose entropy is maximal but may be generated recursively from those that are actually algorithmically random offering a refinement to classical Maxent. We take advantage of a causal algorithmic calculus to derive a thermodynamic-like result based on how difficult it is to reprogram a computer code. Using the distinction between computable and algorithmic randomness we quantify the cost in information loss associated with reprogramming. To illustrate this we apply the algorithmic refinement to Maxent on graphs and introduce a Maximal Algorithmic Randomness Preferential Attachment (MARPA) Algorithm, a generalisation over previous approaches. We discuss practical implications of evaluation of network randomness. Our analysis provides insight in that the reprogrammability asymmetry appears to originate from a non-monotonic relationship to algorithmic probability. Our analysis motivates further analysis of the origin and consequences of the aforementioned asymmetries, reprogrammability, and computation.Comment: 30 page

    A Computational Theory of Subjective Probability

    Get PDF
    In this article we demonstrate how algorithmic probability theory is applied to situations that involve uncertainty. When people are unsure of their model of reality, then the outcome they observe will cause them to update their beliefs. We argue that classical probability cannot be applied in such cases, and that subjective probability must instead be used. In Experiment 1 we show that, when judging the probability of lottery number sequences, people apply subjective rather than classical probability. In Experiment 2 we examine the conjunction fallacy and demonstrate that the materials used by Tversky and Kahneman (1983) involve model uncertainty. We then provide a formal mathematical proof that, for every uncertain model, there exists a conjunction of outcomes which is more subjectively probable than either of its constituents in isolation.Comment: Maguire, P., Moser, P. Maguire, R. & Keane, M.T. (2013) "A computational theory of subjective probability." In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 960-965). Austin, TX: Cognitive Science Societ
    corecore