247 research outputs found

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. FĂŒr die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer DatensĂ€tze werden die vorgeschlagenen RekonstruktionsansĂ€tze im Detail evaluiert

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral codierte multispektrale Lichtfelder, wie sie von einer Lichtfeldkamera mit einem spektral codierten Mikrolinsenarray aufgenommen werden, untersucht. FĂŒr die Rekonstruktion der codierten Lichtfelder werden zwei Methoden entwickelt und im Detail ausgewertet. ZunĂ€chst wird eine vollstĂ€ndige Rekonstruktion des spektralen Lichtfelds entwickelt, die auf den Prinzipien des Compressed Sensing basiert. Um die spektralen Lichtfelder spĂ€rlich darzustellen, werden 5D-DCT-Basen sowie ein Ansatz zum Lernen eines Dictionary untersucht. Der konventionelle vektorisierte Dictionary-Lernansatz wird auf eine tensorielle Notation verallgemeinert, um das Lichtfeld-Dictionary tensoriell zu faktorisieren. Aufgrund der reduzierten Anzahl von zu lernenden Parametern ermöglicht dieser Ansatz grĂ¶ĂŸere effektive AtomgrĂ¶ĂŸen. Zweitens wird eine auf Deep Learning basierende Rekonstruktion der spektralen Zentralansicht und der zugehörigen DisparitĂ€tskarte aus dem codierten Lichtfeld entwickelt. Dabei wird die gewĂŒnschte Information direkt aus den codierten Messungen geschĂ€tzt. Es werden verschiedene Strategien des entsprechenden Multi-Task-Trainings verglichen. Um die QualitĂ€t der Rekonstruktion weiter zu verbessern, wird eine neuartige Methode zur Einbeziehung von Hilfslossfunktionen auf der Grundlage ihrer jeweiligen normalisierten GradientenĂ€hnlichkeit entwickelt und gezeigt, dass sie bisherige adaptive Methoden ĂŒbertrifft. Um die verschiedenen RekonstruktionsansĂ€tze zu trainieren und zu bewerten, werden zwei DatensĂ€tze erstellt. ZunĂ€chst wird ein großer synthetischer spektraler Lichtfelddatensatz mit verfĂŒgbarer DisparitĂ€t Ground Truth unter Verwendung eines Raytracers erstellt. Dieser Datensatz, der etwa 100k spektrale Lichtfelder mit dazugehöriger DisparitĂ€t enthĂ€lt, wird in einen Trainings-, Validierungs- und Testdatensatz aufgeteilt. Um die QualitĂ€t weiter zu bewerten, werden sieben handgefertigte Szenen, so genannte Datensatz-Challenges, erstellt. Schließlich wird ein realer spektraler Lichtfelddatensatz mit einer speziell angefertigten spektralen Lichtfeldreferenzkamera aufgenommen. Die radiometrische und geometrische Kalibrierung der Kamera wird im Detail besprochen. Anhand der neuen DatensĂ€tze werden die vorgeschlagenen RekonstruktionsansĂ€tze im Detail bewertet. Es werden verschiedene Codierungsmasken untersucht -- zufĂ€llige, regulĂ€re, sowie Ende-zu-Ende optimierte Codierungsmasken, die mit einer neuartigen differenzierbaren fraktalen Generierung erzeugt werden. DarĂŒber hinaus werden weitere Untersuchungen durchgefĂŒhrt, zum Beispiel bezĂŒglich der AbhĂ€ngigkeit von Rauschen, der Winkelauflösung oder Tiefe. Insgesamt sind die Ergebnisse ĂŒberzeugend und zeigen eine hohe RekonstruktionsqualitĂ€t. Die Deep-Learning-basierte Rekonstruktion, insbesondere wenn sie mit adaptiven Multitasking- und Hilfslossstrategien trainiert wird, ĂŒbertrifft die Compressed-Sensing-basierte Rekonstruktion mit anschließender DisparitĂ€tsschĂ€tzung nach dem Stand der Technik

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Medical Image Segmentation by Deep Convolutional Neural Networks

    Get PDF
    Medical image segmentation is a fundamental and critical step for medical image analysis. Due to the complexity and diversity of medical images, the segmentation of medical images continues to be a challenging problem. Recently, deep learning techniques, especially Convolution Neural Networks (CNNs) have received extensive research and achieve great success in many vision tasks. Specifically, with the advent of Fully Convolutional Networks (FCNs), automatic medical image segmentation based on FCNs is a promising research field. This thesis focuses on two medical image segmentation tasks: lung segmentation in chest X-ray images and nuclei segmentation in histopathological images. For the lung segmentation task, we investigate several FCNs that have been successful in semantic and medical image segmentation. We evaluate the performance of these different FCNs on three publicly available chest X-ray image datasets. For the nuclei segmentation task, since the challenges of this task are difficulty in segmenting the small, overlapping and touching nuclei, and limited ability of generalization to nuclei in different organs and tissue types, we propose a novel nuclei segmentation approach based on a two-stage learning framework and Deep Layer Aggregation (DLA). We convert the original binary segmentation task into a two-step task by adding nuclei-boundary prediction (3-classes) as an intermediate step. To solve our two-step task, we design a two-stage learning framework by stacking two U-Nets. The first stage estimates nuclei and their coarse boundaries while the second stage outputs the final fine-grained segmentation map. Furthermore, we also extend the U-Nets with DLA by iteratively merging features across different levels. We evaluate our proposed method on two public diverse nuclei datasets. The experimental results show that our proposed approach outperforms many standard segmentation architectures and recently proposed nuclei segmentation methods, and can be easily generalized across different cell types in various organs
    • 

    corecore