103 research outputs found

    Analysis of RGB-D camera technologies for supporting different facial usage scenarios

    Get PDF
    Recently a wide variety of applications has been developed integrating 3D functionalities. Advantages given by the possibility of relying on depth information allows the developers to design new algorithms and to improve the existing ones. In particular, for what concerns face morphology, 3D has led to the possibility to obtain face depth maps highly close to reality and consequently an improvement of the starting point for further analysis such as Face Detection, Face Authentication, Face Identification and Face Expression Recognition. The development of the aforementioned applications would have been impossible without the progress of sensor technologies for obtaining 3D information. Several solutions have been adopted over time. In this paper, emphasis is put on passive stereoscopy, structured light, time-of-flight (ToF) and active stereoscopy, namely the most used technologies for the cameras design and fulfilment according to the literature. The aim of this article is to investigate facial applications and to examine 3D camera technologies to suggest some guidelines for addressing the correct choice of a 3D sensor according to the application that has to be developed

    Analysis of RGB-D camera technologies for supporting different facial usage scenarios

    Get PDF
    AbstractRecently a wide variety of applications has been developed integrating 3D functionalities. Advantages given by the possibility of relying on depth information allows the developers to design new algorithms and to improve the existing ones. In particular, for what concerns face morphology, 3D has led to the possibility to obtain face depth maps highly close to reality and consequently an improvement of the starting point for further analysis such as Face Detection, Face Authentication, Face Identification and Face Expression Recognition. The development of the aforementioned applications would have been impossible without the progress of sensor technologies for obtaining 3D information. Several solutions have been adopted over time. In this paper, emphasis is put on passive stereoscopy, structured light, time-of-flight (ToF) and active stereoscopy, namely the most used technologies for the cameras design and fulfilment according to the literature. The aim of this article is to investigate facial applications and to examine 3D camera technologies to suggest some guidelines for addressing the correct choice of a 3D sensor according to the application that has to be developed

    Development of modern methods for the diagnostics of murals in architectural monuments

    Get PDF
    The paper studies monitoring of the state of murals, retrieval of data pertaining to this state and management and storing of the said data. The possibility of integration of traditional methods of mural mapping and modern methods of data visualization, including new Google Project Tango device technology for fixation of complex textures of inner 3D volumes of architectural monuments has been investigated (for instance Assumption Cathedral). We further discuss the express-scanning of automated cartogramming for further comparison of states and methods of assessing the damage done to the mural. Results indicate that additional work is needed to improve the precision of the method.peer-reviewe

    RGB-D And Thermal Sensor Fusion: A Systematic Literature Review

    Full text link
    In the last decade, the computer vision field has seen significant progress in multimodal data fusion and learning, where multiple sensors, including depth, infrared, and visual, are used to capture the environment across diverse spectral ranges. Despite these advancements, there has been no systematic and comprehensive evaluation of fusing RGB-D and thermal modalities to date. While autonomous driving using LiDAR, radar, RGB, and other sensors has garnered substantial research interest, along with the fusion of RGB and depth modalities, the integration of thermal cameras and, specifically, the fusion of RGB-D and thermal data, has received comparatively less attention. This might be partly due to the limited number of publicly available datasets for such applications. This paper provides a comprehensive review of both, state-of-the-art and traditional methods used in fusing RGB-D and thermal camera data for various applications, such as site inspection, human tracking, fault detection, and others. The reviewed literature has been categorised into technical areas, such as 3D reconstruction, segmentation, object detection, available datasets, and other related topics. Following a brief introduction and an overview of the methodology, the study delves into calibration and registration techniques, then examines thermal visualisation and 3D reconstruction, before discussing the application of classic feature-based techniques as well as modern deep learning approaches. The paper concludes with a discourse on current limitations and potential future research directions. It is hoped that this survey will serve as a valuable reference for researchers looking to familiarise themselves with the latest advancements and contribute to the RGB-DT research field.Comment: 33 pages, 20 figure
    • …
    corecore