148 research outputs found

    Robust Adaptive Depth Control of Hybrid Underwater Glider in Vertical Plane

    Get PDF
    Hybrid underwater glider (HUG) is an advanced autonomous underwater vehicle with propellers capable of sustainable operations for many months. Under the underwater disturbances and parameter uncertainties, it is difficult that the HUG coordinates with the desired depth in a robust manner. In this study, a robust adaptive control algorithm for the HUG is proposed. In the descend and ascend periods, the pitch control is designed using backstepping technique and direct adaptive control. When the vehicle approaches the target depth, the surge speed control using adaptive control combined with the pitch control is used to keep the vehicle at the desired depth with a constant cruising speed in the presence of the disturbances. The stability of the proposed controller is verified by using the Lyapunov theorem. Finally, the computer simulation using the numerical method is conducted to show the effectiveness of the proposed controller for a hybrid underwater glider system

    Design And Development Of An Autonomous Underwater Vehicle Test-Bed (USM-AUV I).

    Get PDF
    In this paper, the development of an underwater robotic vehicle is described. The description includes the mechanical and controller design, and the sensor integration

    Ship Course Keeping Using Different Sliding Mode Controllers

    Get PDF
    This study addresses three sliding mode heading controllers for dealing with uncertain wave disturbances. A nonlinear steering model is derived, and the feedback linearization method is chosen to simplify the nonlinear system in this study. The adaptive method and disturbance observer technique are proposed for course keeping and ensuring robust performance of the time varying wave moment and actuator dynamics. Finally, the simulation results on a navy ship illustrate the effectiveness of the presented control algorithms for course keeping

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Time-optimal trajectory and robust adaptive control for hybrid underwater glider

    Get PDF
    The undersea environment is generally still a mystery for the human race, although it has been with us for a long time. To explore under the sea, the underwater glider is the efficient equipment capable of sustainable operation for several months. For faster and longer duration performance, a new design of underwater glider (UG) shaping ray type is proposed. To have the shortest settling time, a new design of time-optimal trajectory (TOT) for controlling the states of the ray-type hybrid underwater glider (RHUG) is proposed. And for the stable flight control, a robust adaptive controller is designed for the RHUG with unknown parameters and environmental disturbances. The heading dynamics of the RHUG is presented with linear and quadratic damping. A closed form solution of the heading dynamics is realized for designing the time-optimal trajectory. The conventional and super-twisting sliding mode control will be constructed for tracking this trajectory. The tracking performance considering the disturbance effect will be discussed in simulations. For identification of unknown parameters of the system, the adaptive control is designed and implemented by the heading experiment. The RHUG uses the net buoyancy force for gliding under the water, so the depth control is essential. In this dissertation, a robust control algorithm with TOT will be carried out for the heaving motion using a hybrid actuation of the buoyancy engine and the propeller. The net buoyancy force with a constant rate is generated by the buoyancy engine for both descending and ascending motion. And the second actuator for the depth control is the propeller with quick response in producing thrusting force. To apply the robust control with TOT, the control input is designed for the buoyancy engine and thruster individually. And finally, the robust control with TOT using the buoyancy engine and thruster is simulated with consideration of external disturbances. When the RHUG is the underactuated system, a robust adaptive control is designed for the RHUG dynamics based on Lyapunov’s direct method using the backstepping and sliding mode control techniques. The performance of this controller is simulated for gliding motion and depth control with unknown parameters and bounded disturbances.Contents Contents i List of Tables iv List of Figures v Chapter 1. Introduction 1 1.1. Hybrid underwater glider 1 1.2. Time-optimal trajectory 4 1.3. Nonlinear control design 5 Chapter 2. Dynamics of RHUG 8 2.1 Dynamics of underwater vehicles 8 2.2 Design of RHUG platform 11 2.2.1 Hull design 11 2.2.2 Buoyancy engine and mass-shifter 12 2.2.3 Battery 13 2.2.4 Sensors 14 2.2.5 Assembly 16 2.3 Dynamics of RHUG 17 2.4 Hydrodynamic coefficients 19 2.5 Thruster modeling 21 2.6 Buoyancy engine modeling 22 2.7 Mass-shifter modeling 23 Chapter 3. Time-optimal trajectory with actuator saturation for heading control 25 3.1 Time-optimal trajectory 25 3.2 Heading motion 25 3.3 Analytic solution of heading dynamic equation 26 3.3.1 Right-hand direction 29 3.3.2 Left-hand direction 36 3.4 Time-optimal trajectory 42 3.5 Super-twisting sliding mode control 44 3.6 Computer simulation 46 3.6.1 Simulation 1 46 3.6.2 Simulation 2 47 3.6.3 Simulation 3 49 Chapter 4. Time-optimal trajectory for heaving motion control using buoyancy engine and propeller individually 51 4.1. Heave dynamics and TOT 51 4.2. Analytical solution of heave dynamics with buoyancy and thruster force individually 54 4.2.1 First segment with positive rate 54 4.2.2 Second segment with maximum input 55 4.2.3 Third segment with constant velocity 56 4.2.4 Fourth segment with negative rate 57 4.2.5 Fifth segment with minimum input 58 4.3. Time-optimal trajectory for depth motion 59 4.3.1 Find z1, w1 and w1 59 4.3.2 Find t2, z2, w2 and w2 61 4.3.3 Find w3, z4 and w4 62 4.3.4 Find z3, t3 and t4 63 4.3.5 Find α and t5 64 4.4. Sliding mode control for heave dynamics 64 4.5. Computer simulation 66 4.5.1. Simulation 1 66 4.5.2. Simulation 2 69 Chapter 5. Experimental study of direct adaptive control along TOT for heading motion 72 5.1. Motivation 72 5.2. Composition of RHUG 73 5.3. Robust adaptive control for heading dynamics 77 5.4. Computer simulation 79 5.5 Experiment 82 5.5.1 First experiment with k1=2.5,k2=30 82 5.5.2 Second experiment with k1=2,k2=30 83 5.5.3 Third experiment with k1=2,k2=50 85 Chapter 6. Robust adaptive control design for vertical motion 89 6.1. Dynamics of vertical plane 89 6.2. Adaptive sliding-mode control for pitch motion 91 6.3. Adaptive sliding-mode control for surge motion 93 6.4. LOS and PI depth-keeping guidance 95 6.5. Computer simulation 97 6.5.1 Simulation 1 97 6.5.2 Simulation 2 104 Chapter 7. Conclusion 111 Reference 113Docto

    State relativity and speed-allocated line-of-sight course control for path-following of underwater vehicles

    Get PDF
    Path-following is a primary task for most marine, air or space crafts, especially during autonomous operations. Research on autonomous underwater vehicles (AUV) has received large interests in the last few decades with research incentives emerging from the safe, cost-effective and practical solutions provided by their applications such as search and rescue, inspection and monitoring of pipe-lines ans sub-sea structures. This thesis presents a novel guidance system based on the popular line-of-sight (LOS) guidance law for path-following (PF) of underwater vehicles (UVs) subject to environmental disturbances. Mathematical modeling and dynamics of (UVs) is presented first. This is followed by a comprehensive literature review on guidance-based path-following control of marine vehicles, which includes revised definitions of the track-errors and more detailed illustrations of the general PF problem. A number of advances on relative equations of motion are made, which include an improved understanding of the fluid FLOW frame and expression of its motion states, an analytic method of modeling the signs of forces and moments and the proofs of passivity and boundedness of relative UV systems in 3-D. The revision in the relative equations of motion include the concept of state relativity, which is an improved understanding of relativity of motion states expressed in reference frames and is also useful in incorporating environmental disturbances. In addition, the concept of drift rate is introduced along with a revision on the angles of motion in 3-D. A switching mechanism was developed to overcome a drawback of a LOS guidance law, and the linear and nonlinear stability results of the LOS guidance laws have been provided, where distinctions are made between straight and curved PF cases. The guidance system employs the unique formulation and solution of the speed allocation problem of allocating a desired speed vector into x and y components, and the course control that employs the slip angle for desired heading for disturbance rejection. The guidance system and particularly the general course control problem has been extended to 3-D with the new definition of vertical-slip angle. The overall guidance system employing the revised relative system model, course control and speed allocation has performed well during path-following under strong ocean current and/or wave disturbances and measurement noises in both 2-D and 3-D scenarios. In 2-D and 3-D 4 degrees-of-freedom models (DOF), the common sway-underactuated and fully actuated cases are considered, and in 3-D 5-DOF model, sway and heave underactuated and fully actuated cases are considered. Stability results of the LOS guidance laws include the semi-global exponential stability (SGES) of the switching LOS guidance and enclosure-based LOS guidance for straight and curved paths, and SGES of the loolahead-based LOS guidance laws for curved paths. Feedback sliding mode and PID controllers are applied during PF providing a comparison between them, and simulations are carried out in MatLab

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    Control and guidance systems for the navigation of a biomimetic autonomous underwater vehicle

    Get PDF
    The field of Autonomous Underwater Vehicles (AUVs) has increased dramatically in size and scope over the past three decades. Application areas for AUVs are numerous and varied, from deep sea exploration, to pipeline surveillance to mine clearing. The main concept behind this work was the design and the implementation of a control and guidance system for the navigation of a biomimetic AUV. In particular, the AUV analysed in this project tries to imitate the appearance and approximate the swimming method of an Atlantic Salmon and, for this reason, has been called RoboSalmo
    corecore