82 research outputs found

    Deployment of an open sensorized platform in a smart city context

    Get PDF
    The race to achieve smart cities is producing a continuous effort to adapt new developments and knowledge, for administrations and citizens. Information and Communications Technology are called on to be one of the key players to get these cities to use smart devices and sensors (Internet of Things) to know at every moment what is happening within the city, in order to make decisions that will improve the management of resources. The proliferation of these “smart things” is producing significant deployment of networks in the city context. Most of these devices are proprietary solutions, which do not offer free access to the data they provide. Therefore, this prevents the interoperability and compatibility of these solutions in the current smart city developments. This paper presents how to embed an open sensorized platform for both hardware and software in the context of a smart city, more specifically in a university campus. For this integration, GIScience comes into play, where it offers different open standards that allow full control over “smart things” as an agile and interoperable way to achieve this. To test our system, we have deployed a network of different sensorized platforms inside the university campus, in order to monitor environmental phenomena

    Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease

    Get PDF
    In recent years, some offcial reports, to produce best products regarding quality, quantity and economic conditions, recommend that the farming sector should benefit with new tools and techniques coming from Information and Communications Technology (ICT) realm. In this way, during last decade the deployment of sensing devices has increased considerably in the field of agriculture. This fact has led to a new concept called smart agriculture, and it contemplates activities such as field monitoring, which offer support to make decisions or perform actions, such as irrigation or fertilization. Apart from sensing devices, which use the Internet protocol to transfer data (Internet of Things), there are the so-called crop models, which are able to provide added value over the data provided by the sensors, with the aim of providing recommendations to farmers in decision-making and thus, increase the quality and quantity of their production. In this scenario, the current work uses a low-cost sensorized platform, capable of monitoring meteorological phenomena following the Internet of Things paradigm, with the goal to apply an alert disease model on the cultivation of the vine. The edge computing paradigm is used to achieve this objective; also our work follows some advances from GIScience to increase interoperability. An example of this platform has been deployed in a vineyard parcel located in the municipality of Vilafamés (Castelló, Spain)

    Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease

    Get PDF
    In recent years, some official reports, to produce best products regarding quality, quantity and economic conditions, recommend that the farming sector should benefit with new tools and techniques coming from Information and Communications Technology (ICT) realm. In this way, during last decade the deployment of sensing devices has increased considerably in the field of agriculture. This fact has led to a new concept called smart agriculture, and it contemplates activities such as field monitoring, which offer support to make decisions or perform actions, such as irrigation or fertilization. Apart from sensing devices, which use the Internet protocol to transfer data (Internet of Things), there are the so-called crop models, which are able to provide added value over the data provided by the sensors, with the aim of providing recommendations to farmers in decision-making and thus, increase the quality and quantity of their production. In this scenario, the current work uses a low-cost sensorized platform, capable of monitoring meteorological phenomena following the Internet of Things paradigm, with the goal to apply an alert disease model on the cultivation of the vine. The edge computing paradigm is used to achieve this objective; also our work follows some advances from GIScience to increase interoperability. An example of this platform has been deployed in a vineyard parcel located in the municipality of Vilafamés (Castelló Spain)

    A Low-Cost Control Occupancy Solution Using a Time-of-Flight Ranging Sensor Laser

    Get PDF
    Forma part de la Conferència IPIN 2021 WiP Proceedings, November 29 – December 2, 2021, Lloret de Mar, Spain "International Conference on Indoor Positioning and Indoor Navigation, IPIN 2021 [Preface]," 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2021, doi: 10.1109/IPIN51156.2021.9701845.The pandemic situation has driven to several measures to prevent the spread of COVID-19. One of these measures is social distance and, as a consequence, limitation of capacity of indoor closed spaces. This makes necessary the deployment of systems that help to control occupancy of spaces. This work proposes a low-cost system to control access to an indoor closed space with a single door. The system is based in a two laser Time-of-Flight sensors VL53L0X over a HiLetgo UNO R3D1R32 ESP32 microcontroller. The system counts the occupancy of the room and share it with a database and a dashboard, using Node-RED. The tested prototype shows a 86.6% reliability that increases to a 100% reliability when users are informed to enter or exit one by one. The main contributions of this work are: to control capacity of one-entrance indoor closed space with a low cost open system; and to record occupancy of the room in order to analyse it behaviour with time

    Smart campuses : extensive review of the last decade of research and current challenges

    Get PDF
    Novel intelligent systems to assist energy transition and improve sustainability can be deployed at different scales, ranging from a house to an entire region. University campuses are an interesting intermediate size (big enough to matter and small enough to be tractable) for research, development, test and training on the integration of smartness at all levels, which has led to the emergence of the concept of “smart campus” over the last few years. This review article proposes an extensive analysis of the scientific literature on smart campuses from the last decade (2010-2020). The 182 selected publications are distributed into seven categories of smartness: smart building, smart environment, smart mobility, smart living, smart people, smart governance and smart data. The main open questions and challenges regarding smart campuses are presented at the end of the review and deal with sustainability and energy transition, acceptability and ethics, learning models, open data policies and interoperability. The present work was carried out within the framework of the Energy Network of the Regional Leaders Summit (RLS-Energy) as part of its multilateral research efforts on smart region
    • …
    corecore