19,092 research outputs found

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    Distributed chemical sensor networks for environmental sensing

    Get PDF
    Society is increasingly accustomed to instant access to real-time information, due to the ubiquitous use of the internet and web-based access tools. Intelligent search engines enable huge data repositories to be searched, and highly relevant information returned in real time. These repositories increasingly include environmental information related to the environment, such as distributed air and water quality. However, while this information at present is typically historical, for example, through agency reports, there is increasing demand for real-time environmental data. In this paper, the issues involved in obtaining data from autonomous chemical sensors are discussed, and examples of current deployments presented. Strategies for achieving large-scale deployments are discussed

    Autonomous monitoring framework for resource-constrained environments

    Get PDF
    Acknowledgments The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub, reference: EP/G066051/1. URL: http://www.dotrural.ac.uk/RemoteStream/Peer reviewedPublisher PD

    Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle

    Get PDF
    We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.)

    Landfill gas monitoring network - development of wireless sensor network platforms

    Get PDF
    A wireless sensor network has been developed for the application of landfill gas monitoring, specifically sensing methane, carbon dioxide and extraction pressure. This collaborative work with the Irish Environmental Protection Agency has been motivated by the need to reduce greenhouse gas emissions as well as aiming to improve landfill gas management and utilisation. This paper describes the preliminary findings of an ongoing trial deployment of multiple sensing platforms on an active landfill facility; data has been acquired for nine months to date. The platforms have operated successfully despite adverse on-site conditions, with validity demonstrated by reasonably strong correlation with independent on-site measurements. The increased temporal and spatial resolution provided by distributed sensor platforms is discussed with regard to improving landfill gas management practice

    MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Get PDF
    Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data across multiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.Comment: Accepted to be published in Transactions on Collaborative Computing, 2014. arXiv admin note: substantial text overlap with arXiv:1310.405
    corecore