905 research outputs found

    A Panoramic Study of Fall Detection Technologies

    Get PDF
    Falls are a major risk of injury for elderly aged 65 or over, blind people, people with balance disorder and leg weakness. In this regard, assistive technology which aims to identify fall events at real time can reduce the rate of impairments and mortality. This study offer a literature research reference value for bioengineers for further research. Much of the past and the current fall detection research, the vital signals features and the way features are extracted and fed to a classifier are introduced. The study concludes with an assessment of the current technologies highlighting their critical limitations along with suggestions for future research direction in this rapidly developing field of study.http://dx.doi.org/10.20943/01201603.626

    Smart streetlights: a feasibility study

    Get PDF
    The world's cities are growing. The effects of population growth and urbanisation mean that more people are living in cities than ever before, a trend set to continue. This urbanisation poses problems for the future. With a growing population comes more strain on local resources, increased traffic and congestion, and environmental decline, including more pollution, loss of green spaces, and the formation of urban heat islands. Thankfully, many of these stressors can be alleviated with better management and procedures, particularly in the context of road infrastructure. For example, with better traffic data, signalling can be smoothed to reduce congestion, parking can be made easier, and streetlights can be dimmed in real time to match real-world road usage. However, obtaining this information on a citywide scale is prohibitively expensive due to the high costs of labour and materials associated with installing sensor hardware. This study investigated the viability of a streetlight-integrated sensor system to affordably obtain traffic and environmental information. This investigation was conducted in two stages: 1) the development of a hardware prototype, and 2) evaluation of an evolved prototype system. In Stage 1 of the study, the development of the prototype sensor system was conducted over three design iterations. These iterations involved, in iteration 1, the live deployment of the prototype system in an urban setting to select and evaluate sensors for environmental monitoring, and in iterations 2 and 3, deployments on roads with live and controlled traffic to develop and test sensors for remote traffic detection. In the final iteration, which involved controlled passes of over 600 vehicle, 600 pedestrian, and 400 cyclist passes, the developed system that comprised passive-infrared motion detectors, lidar, and thermal sensors, could detect and count traffic from a streetlight-integrated configuration with 99%, 84%, and 70% accuracy, respectively. With the finalised sensor system design, Stage 1 showed that traffic and environmental sensing from a streetlight-integrated configuration was feasible and effective using on-board processing with commercially available and inexpensive components. In Stage 2, financial and social assessments of the developed sensor system were conducted to evaluate its viability and value in a community. An evaluation tool for simulating streetlight installations was created to measure the effects of implementing the smart streetlight system. The evaluation showed that the on-demand traffic-adaptive dimming enabled by the smart streetlight system was able to reduce the electrical and maintenance costs of lighting installations. As a result, a 'smart' LED streetlight system was shown to outperform conventional always-on streetlight configurations in terms of financial value within a period of five to 12 years, depending on the installation's local traffic characteristics. A survey regarding the public acceptance of smart streetlight systems was also conducted and assessed the factors that influenced support of its applications. In particular, the Australia-wide survey investigated applications around road traffic improvement, streetlight dimming, and walkability, and quantified participants' support through willingness-to-pay assessments to enable each application. Community support of smart road applications was generally found to be positive and welcomed, especially in areas with a high dependence on personal road transport, and from participants adversely affected by spill light in their homes. Overall, the findings of this study indicate that our cities, and roads in particular, can and should be made smarter. The technology currently exists and is becoming more affordable to allow communities of all sizes to implement smart streetlight systems for the betterment of city services, resource management, and civilian health and wellbeing. The sooner that these technologies are embraced, the sooner they can be adapted to the specific needs of the community and environment for a more sustainable and innovative future

    Design of a Customized multipurpose nano-enabled implantable system for in-vivo theranostics

    Get PDF
    The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device

    Smart aging : utilisation of machine learning and the Internet of Things for independent living

    Get PDF
    Smart aging utilises innovative approaches and technology to improve older adults’ quality of life, increasing their prospects of living independently. One of the major concerns the older adults to live independently is “serious fall”, as almost a third of people aged over 65 having a fall each year. Dementia, affecting nearly 9% of the same age group, poses another significant issue that needs to be identified as early as possible. Existing fall detection systems from the wearable sensors generate many false alarms; hence, a more accurate and secure system is necessary. Furthermore, there is a considerable gap to identify the onset of cognitive impairment using remote monitoring for self-assisted seniors living in their residences. Applying biometric security improves older adults’ confidence in using IoT and makes it easier for them to benefit from smart aging. Several publicly available datasets are pre-processed to extract distinctive features to address fall detection shortcomings, identify the onset of dementia system, and enable biometric security to wearable sensors. These key features are used with novel machine learning algorithms to train models for the fall detection system, identifying the onset of dementia system, and biometric authentication system. Applying a quantitative approach, these models are tested and analysed from the test dataset. The fall detection approach proposed in this work, in multimodal mode, can achieve an accuracy of 99% to detect a fall. Additionally, using 13 selected features, a system for detecting early signs of dementia is developed. This system has achieved an accuracy rate of 93% to identify a cognitive decline in the older adult, using only some selected aspects of their daily activities. Furthermore, the ML-based biometric authentication system uses physiological signals, such as ECG and Photoplethysmogram, in a fusion mode to identify and authenticate a person, resulting in enhancement of their privacy and security in a smart aging environment. The benefits offered by the fall detection system, early detection and identifying the signs of dementia, and the biometric authentication system, can improve the quality of life for the seniors who prefer to live independently or by themselves

    Critical evaluation and novel design of a non-invasive and wearable health monitoring system

    Get PDF
    This thesis was submitted for the degree of Master of Philosophy and awarded by Brunel University.This study is about developing a non-invasive wearable health-monitoring system. The project aims to achieve miniaturisation as much as possible, using nanotechnology. The achieved results of the project are nothing but conceptual images of a convertible watch. The system is a non-invasive health measurement system. An important part of the study is researching the automation of blood pressure measurement by means of experiments which test the effect of exterior factors on blood pressure level. These experiments have been held to improve the automation and simplicity of BP measurements to establish a 24hr BP monitoring system. This study proposed a medical sensor that is part of the watch system, and that is most compatible with the elderly people product preferences in the UK. The “sensor strip” is in cm range, integrating a number of MEMS sensors, for the non-invasive detection of certain health aspects. The health aspects are chosen according to how close they are from the “health vital signs”, which are the first measurements executed by the doctor, if a patient is to visit him. An applied QFD study showed that the most suitable measurement technology to be used in the proposed sensor strip is the infrared technology. In addition to the sensor strip, EEG health detection is added, which is the reason why the watch is convertible. MEMS sensors, MEMS memory and an embedded processor are selected, since that this project also includes minimising the size of a device where the utilization of nanotechnology is vital. The final result of the study is only a conceptual design of a product with a carefully selected subsystems. The software design of the product will not be further developed to become a physical prototype of a consumer product

    APPLICATIONS OF MACHINE LEARNING AND COMPUTER VISION FOR SMART INFRASTRUCTURE MANAGEMENT IN CIVIL ENGINEERING

    Get PDF
    Machine Learning and Computer Vision are the two technologies that have innovative applications in diverse fields, including engineering, medicines, agriculture, astronomy, sports, education etc. The idea of enabling machines to make human like decisions is not a recent one. It dates to the early 1900s when analogies were drawn out between neurons in a human brain and capability of a machine to function like humans. However, major advances in the specifics of this theory were not until 1950s when the first experiments were conducted to determine if machines can support artificial intelligence. As computation powers increased, in the form of parallel computing and GPU computing, the time required for training the algorithms decreased significantly. Machine Learning is now used in almost every day to day activities. This research demonstrates the use of machine learning and computer vision for smart infrastructure management. This research’s contribution includes two case studies – a) Occupancy detection using vibration sensors and machine learning and b) Traffic detection, tracking, classification and counting on Memorial Bridge in Portsmouth, NH using computer vision and machine learning. Each case study, includes controlled experiments with a verification data set. Both the studies yielded results that validated the approach of using machine learning and computer vision. Both case studies present a scenario where in machine learning is applied to a civil engineering challenge to create a more objective basis for decision-making. This work also includes a summary of the current state-of-the -practice of machine learning in Civil Engineering and the suggested steps to advance its application in civil engineering based on this research in order to use the technology more effectively
    • …
    corecore