93 research outputs found

    VSO: Self-organizing Spatial Publish Subscribe

    Get PDF
    Abstract-Spatial publish subscribe (SPS) is a basic primitive underlying many real-time, interactive applications such as online games or discrete-time simulations. Supporting SPS on a large-scale, however, requires sufficient resources and proper load distribution among the simulation units. For load distribution, existing mechanisms either use a static partitioning, such that over-provisioning or overloading are bound to occur, or require manual adjustments unsuitable for massive workloads. We describe Voronoi Self-organizing Overlay (VSO) [1], which extends a Voronoi-based Overlay network (VON) to automatically partition and manage a logical space to support SPS. Efficient resource usage thus is possible as only the units necessary to maintain the system are used. Load is also balanced among the resource units so that overloading or overprovisioning can be avoided. We use simulations to verify our design and describe some preliminary results

    Towards a Framework for DHT Distributed Computing

    Get PDF
    Distributed Hash Tables (DHTs) are protocols and frameworks used by peer-to-peer (P2P) systems. They are used as the organizational backbone for many P2P file-sharing systems due to their scalability, fault-tolerance, and load-balancing properties. These same properties are highly desirable in a distributed computing environment, especially one that wants to use heterogeneous components. We show that DHTs can be used not only as the framework to build a P2P file-sharing service, but as a P2P distributed computing platform. We propose creating a P2P distributed computing framework using distributed hash tables, based on our prototype system ChordReduce. This framework would make it simple and efficient for developers to create their own distributed computing applications. Unlike Hadoop and similar MapReduce frameworks, our framework can be used both in both the context of a datacenter or as part of a P2P computing platform. This opens up new possibilities for building platforms to distributed computing problems. One advantage our system will have is an autonomous load-balancing mechanism. Nodes will be able to independently acquire work from other nodes in the network, rather than sitting idle. More powerful nodes in the network will be able use the mechanism to acquire more work, exploiting the heterogeneity of the network. By utilizing the load-balancing algorithm, a datacenter could easily leverage additional P2P resources at runtime on an as needed basis. Our framework will allow MapReduce-like or distributed machine learning platforms to be easily deployed in a greater variety of contexts

    Peer-to-Peer Simulation of Massive Virtual Environments

    Get PDF
    Massively multiplayer online environments continue to grow in popularity, with cur- rent technical designs based upon a well-proven client-server model. This approach has some inherent limitations, high costs to provision server resources for peak demands and restriction of the maximum number of concurrent participants within a virtual environ- ment. Incorporating peer-to-peer (P2P) techniques provides developers the opportunity to significantly reduce costs, while also breaking through the barrier of the number of concur- rent participants within a single virtual environment. This dissertation presents a hybrid P2P design incorporating a managed server along with a Voronoi-based P2P overlay for the development of massive virtual environments. In this design, the managed server en- sures a secure computing environment and long-term persistent storage, with the virtual environment simulation distributed among the peers, ensuring computational scalability

    LayStream: composing standard gossip protocols for live video streaming

    Get PDF
    Gossip-based live streaming is a popular topic, as attested by the vast literature on the subject. Despite the particular merits of each proposal, all need to implement and deal with common challenges such as membership management, topology construction and video packets dissemination. Well-principled gossip-based protocols have been proposed in the literature for each of these aspects. Our goal is to assess the feasibility of building a live streaming system, \sys, as a composition of these existing protocols, to deploy the resulting system on real testbeds, and report on lessons learned in the process. Unlike previous evaluations conducted by simulations and considering each protocol independently, we use real deployments. We evaluate protocols both independently and as a layered composition, and unearth specific problems and challenges associated with deployment and composition. We discuss and present solutions for these, such as a novel topology construction mechanism able to cope with the specificities of a large-scale and delay-sensitive environment, but also with requirements from the upper layer. Our implementation and data are openly available to support experimental reproducibility

    Update propagation for peer-to-peer-based massively multi-user virtual environments

    Full text link
    Over the last decade Massively Multi-user Virtual Environments (MMVEs) have become an integral part of modern culture and business. Applications for these large-scale virtual environments range from gaming to business and scientific research. Some MMVEs reach a user base in the tens of millions and the total number of users is estimated in the billions. Despite this success, launching an MMVEs is still a risky proposition. This is in large part due to the high cost associated with setting up and maintaining the necessary server infrastructure. One way of reducing the costs of operating MMVEs is to switch their system architecture from the current client/server-based model to one based on peer-to-peer (P2P) technologies. This has the potential to significantly reduce the infrastructure costs of MMVEs, as users bring their own resources into the P2P system and servers are no longer required, thus decreasing expenses and market entry barriers. This thesis describes a scalable and low-latency update propagation system for P2P-based MMVEs. Update propagation refers to the exchange of information about changes in the virtual environment between users and is one of the key components of MMVEs. Thus, the described system represents a key step towards operating MMVEs as fully distributed peer-to-peer systems

    The Reality of the Situation: A Survey of Situated Analytics

    Get PDF

    Dynamic Load Balancing for Massively Multiplayer Online Games

    Get PDF
    In recent years, there has been an important growth of online gaming. Today’s Massively Multiplayer Online Games (MMOGs) can contain millions of synchronous players scattered across the world and participating with each other within a single shared game. Traditional Client/Server architectures of MMOGs exhibit different problems in scalability, reliability, and latency, as well as the cost of adding new servers when demand is too high. P2P architecture provides considerable support for scalability of MMOGs. It also achieves good response times by supporting direct connections between players. This thesis proposes a novel hybrid Peer-to-Peer architecture for MMOGs and a new dynamic load balancing for massively multiplayer online games (MMOGs) based this hybrid Peer-to-Peer architecture. We have divided the game world space into several regions. Each region in the game world space is controlled and managed by using both a super-peer and a clone-super-peer. The region's super-peer is responsible for distributing the game update among the players inside the region, as well as managing the game communications between the players. However, the clone-super-peer is responsible for controlling the players' migration from one region to another, in addition to be the super-peer of the region when the super-peer leaves the game. In this thesis, we have designed and simulated a static and dynamic Area of Interest Management (AoIM) for MMOGs based on both architectures hybrid P2P and client-server with the possibility of players to move from one region to another. In this thesis also, we have designed and evaluated the static and dynamic load balancing for MMOGs based on hybrid P2P architecture. We have used OPNET Modeler 18.0 to simulate and evaluate the proposed system, especially standard applications, custom applications, TDMA and RX Group. Our dynamic load balancer is responsible for distributing the load among the regions in the game world space. The position of the load balancer is located between the game server and the regions. The results, following extensive experiments, show that low delay and higher traffic communication can be achieved using both of hybrid P2P architecture, static and dynamic AoIM, dynamic load balancing for MMOGs based on hybrid P2P system

    Structures and Algorithms for Peer-to-Peer Cooperation

    Full text link
    Peer-to-peer overlay networks are distributed systems, without any hierarchical organization or centralized control. Peers form self-organizing overlay networks that are on top of the Internet. Both parts of this thesis deal with peer-to-peer overlay networks, the first part with unstructured ones used to build a large scale Networked Virtual Environment. The second part gives insights on how the users of a real life structured peer-to-peer network behave, and how well the proposed algorithms for publishing and retrieving data work. Moreover we analyze the security (holes) in such a system. Networked virtual environments (NVEs), also known as distributed virtual environments, are computer-generated, synthetic worlds that allow simultaneous interactions of multiple participants. Many efforts have been made to allow people to interact in realistic virtual environments, resulting in the recent boom of Massively Multiplayer Online Games. In the first part of the thesis, we present a complete study of an augmented Delaunay-based overlay for peer-to-peer shared virtual worlds. We design an overlay network matching the Delaunay triangulation of the participating peers in a generalized d-dimensional space. Especially, we describe the self-organizing algorithms for peer insertion and deletion. To reduce the delay penalty of overlay routing, we propose to augment each node of the Delaunay-based overlay with a limited number of carefully selected shortcut links creating a small-world. We show that a small number of shortcuts is sufficient to significantly decrease the delay of routing in the space. We present a distributed algorithm for the clustering of peers. The algorithm is dynamic in the sense that whenever a peer joins or leaves the NVE, the clustering will be adapted if necessary by either splitting a cluster or merging clusters. The main idea of the algorithm is to classify links between adjacent peers into short intracluster and long inter-cluster links. In a structured system, the neighbor relationship between peers and data locations is strictly defined. Searching in such systems is therefore determined by the particular network architecture. Among the strictly structured systems, some implement a distributed hash table (DHT) using different data structures. DHTs have been actively studied in the literature and many different proposals have been made on how to organize peers in a DHT. However, very few DHTs have been implemented in real systems and deployed on a large scale. One exception is KAD, a DHT based on Kademlia, which is part of eDonkey, a peer-to-peer file sharing system with several million simultaneous users. In the second part of this thesis we give a detailed background on KAD, the organization of the peers, the search and the publish operations, and we describe our measurement methodology. We have been crawling KAD continuously for more than a year. We obtained information about geographical distribution of peers, session times, peer availability, and peer lifetime. We found that session times are Weibull distributed and show how this information can be exploited to make the publishing mechanism much more efficient. As we have been studying KAD over the course of the last two years we have been both, fascinated and frightened by the possibilities KAD offers. We show that mounting a Sybil attack is very easy in KAD and allows to compromise the privacy of KAD users, to compromise the correct operation of the key lookup and to mount distributed denial-of-service attacks with very little resources
    • …
    corecore