2,943 research outputs found

    Deploying the ICT architecture of a residential demand response pilot

    Get PDF
    The Flemish project Linear was a large scale residential demand response pilot that aims to validate innovative smart grid technology building on the rollout of information and communication technologies in the power grid. For this pilot a scalable, reliable and interoperable ICT infrastructure was set up, interconnecting 240 residential power grid customers with the backend systems of energy service providers (ESPs), flexibility aggregators, distribution system operators (DSOs) and balancing responsible parties (BRPs). On top of this architecture several business cases were rolled out, which require the sharing of metering data and flexibility information, and demand response algorithms for the balancing of renewable energy and the mitigation of voltage and power issues in distribution grids. The goal of the pilot is the assessment of the technical and economical feasibility of residential demand response in real life, and of the interaction with the end-consumer. In this paper we focus on the practical experiences and lessons learnt during the deployment of the ICT technology for the pilot. This includes the real-time gathering of measurement data and real-time control of a wide range of smart appliances in the homes of the participants. We identified a number of critical issues that need to be addressed for a future full-scale roll-out: (i) reliable in-house communication, (ii) interoperability of appliances, measurement equipment, backend systems, and business cases, and (iii) sufficient backend processing power for real-time analysis and control

    Investigation into the impact of wind power generation on demand side management (DSM) practices

    Get PDF
    The construction of a number of wind farms in South Africa will lay the foundation for the country to embrace the generation of greener energy into the National Grid. Despite the benefits derived from introducing wind power generation into the grid, this source encompasses adverse effects which need to be managed. These adverse effects include the intermittency and lack of predictability of wind. In power systems with a high penetration of wind energy, these effects can severely affect the power system’s security and reliability in the event of significant rapid ramp rates. Recently, many utilities around the world have been exploring the use of Demand Side Management (DSM) and Demand Response (DR) initiatives and programmes to support and manage the intermittency of wind power generation. This report outlines the programmes and benefits of DSM/DR and provides a critical analysis of the challenges facing South Africa with implementing these initiatives. Introducing these programmes necessitates the employment of a number of Smart Grid technologies including Advanced Metering Infrastructure (AMI), next generation telecommunications technologies, smart meters, enterprise system integration and dynamic pricing. These tools and techniques are discussed and their challenges described within the context of South Africa’s current state of the power system. The current practices for DSM/DR in South Africa have been evaluated in this report. Despite, the success of many DSM/DR initiatives in the commercial, industrial and agricultural sectors, it is found that much work is still required in the residential sectors as the current DSM initiatives are not adequate for managing wind power generation. A detailed analysis and recommendations for South Africa’s DR program is then presented based on industry best practices and experiences from other utilities who are currently exploring DSM/DR in the residential sector using Smart Grid technologies

    Demand Response Driven Load Scheduling in Formal Smart Grid Framework

    Get PDF
    In this technical report, we present the current state of the research conducted during the first part of the PhD project named “Demand Response Driven Load Scheduling in Formal Smart Grid Framework”. The PhD project focuses on smart grids which employ information and communication technologies to assist the electricity production, distribution, and consumption. Designing smart grid applications is a novel challenging task that requires modeling, integrating, and validating different grid aspects in an efficient way. The project tackles such challenges by proposing an effective framework to formally describe smart grid elements along with their interactions. To validate this framework, the report concentrates on deploying efficiency in managing the electricity consumption in households which requires focusing on different impacts of demand response programs running in the smart grid to engage consumers to participate. A demand response system is considered which is connected to all households and utilizes their information to determine an effective load management strategy taking into account the grid constraints imposed by distribution system operators. The main responsibility of the demand response system is scheduling the operation of appliances of a large number of consumers in order to achieve a network-wide optimized performance. Finally, the PhD report demonstrates the simulation results, publications, courses, and dissemination activities done during this period. They are followed by envisaging future plans that will lead to completion of the PhD study

    State of the Art and Trends Review of Smart Metering in Electricity Grids

    Get PDF
    Climate change, awareness of energy efficiency, new trends in electricity markets, the obsolescence of the actual electricity model, and the gradual conversion of consumers to prosumer profiles are the main agents of progressive change in electricity systems towards the Smart Grid paradigm. The introduction of multiple distributed generation and storage resources, with a strong involvement of renewable energies, exposes the necessity of advanced metering or Smart Metering systems, able to manage and control those distributed resources. Due to the heterogeneity of the Smart Metering systems and the specific features of each grid, it is easy to find in the related literature a wide range of solutions with different features. This work describes the key elements in a Smart Metering system and compiles the most employed technologies and standards as well as their main features. Since Smart Metering systems can perform jointly with other activities, these growing initiatives are also addressed. Finally, a revision of the main trends in Smart Metering uses and deployments worldwide is included.his work has been partially supported by the Spanish Ministry of Economy and Competitiveness (project TEC2015-67868-C3-1-R), the University of the Basque Country (UPV/EHU) within the program for the specialization of the postdoctoral researcher staff, and Microgrids with Renewable Distributed Generation (MIGEDIR) (project 713RT0468), funded by the Science and Technology for Development Iberoamerican Program (CYTED)

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system

    Paving the road toward Smart Grids through large-scale advanced metering infrastructures

    Get PDF
    Upgrading current electricity grid to the so-called Smart Grid represents one of the major engineering challenges ever. Hence, the road toward the Smart Grid will be long and needs to be paved gradually, certainly driving the next wave of research and innovation in both the energy and the ICT (Information and Communications Technologies) sectors. Currently, the earliest stages of such a complex project are being undertaken and AMI (Advanced Metering Infrastructures) stand out as the first steps toward the Smart Grid. The Spanish R&D (Research and Development) demonstration project PRICE-GEN aims to be a flagship AMI project at both national and international level. It is focused on increasing the awareness of the status of the low voltage power distribution network through an optimal and interoperable communications architecture which provides detailed information on customers' consumption and generation. The project entails the deployment of over 200,000 smart meters in the area of Madrid, such a pilot scheme being also used as reference in other European R&D projects, such as the IGREENGrid (IntegratinG Renewables in the European Electricity Grid). This paper presents the communications architecture and technologies which are deployed in the field, analyzing how they fit some specific Smart Grid communications requirement. In addition, the paper describes in detail the pilot itself along with the services which are currently been delivered as well as with the foreseen ones. Finally, the main trends in AMI from the ICT perspective are also discussed.This work has been partly funded by the Spanish Ministry of Economy and Competitiveness through the INNPACTO Programme under the project PRICE-GEN (IPT-2011-1507-920000). The authors would like to thank the support and collaboration of all the partners of the PRICE-GEN consortium: Arteche, Centro de Investigación de Recursos y Consumos Energéticos, Current Iberia, Iberdrola Distribución, Universidad Carlos III de Madrid, Unión Fenosa Distribución, and ZIV Metering Solutions

    Demand Side Management of Electric Vehicles in Smart Grids: A survey on strategies, challenges, modeling, and optimization

    Get PDF
    The shift of transportation technology from internal combustion engine (ICE) based vehicles to electricvehicles (EVs) in recent times due to their lower emissions, fuel costs, and greater efficiency hasbrought EV technology to the forefront of the electric power distribution systems due to theirability to interact with the grid through vehicle-to-grid (V2G) infrastructure. The greater adoptionof EVs presents an ideal use-case scenario of EVs acting as power dispatch, storage, and ancillaryservice-providing units. This EV aspect can be utilized more in the current smart grid (SG) scenarioby incorporating demand-side management (DSM) through EV integration. The integration of EVswith DSM techniques is hurdled with various issues and challenges addressed throughout thisliterature review. The various research conducted on EV-DSM programs has been surveyed. This reviewarticle focuses on the issues, solutions, and challenges, with suggestions on modeling the charginginfrastructure to suit DSM applications, and optimization aspects of EV-DSM are addressed separatelyto enhance the EV-DSM operation. Gaps in current research and possible research directions have beendiscussed extensively to present a comprehensive insight into the current status of DSM programsemployed with EV integration. This extensive review of EV-DSM will facilitate all the researchersto initiate research for superior and efficient energy management and EV scheduling strategies andmitigate the issues faced by system uncertainty modeling, variations, and constraints

    Förderung des Aufbaus von Smart Grids in Thailand als Zusammenspiel von intelligenten Gebäuden, intelligenten Verbrauchern und einer intelligenten Energiepolitik

    Get PDF
    Smart grid technology can enhance renewable energy in the electricity system by integrating information communication technology (ICT) into the existing electricity network. Residential and commercial buildings can perform as a power plant with an energy design concept by integrating renewable energy and energy storage system. However, there has been relatively little focus on how to enhance the residential sector in smart grid development in the context of Thailand. This research focuses on residential buildings only. The technology assessment shows that energy efficiency measures (EEM) must be implemented to reduce the energy demand of the building. The Ice thermal energy storage system (ITES) is an appropriate energy storage system application that can provide cooling energy, which is the major energy consumer in residential building. The integration of EEM, the PV system, and the ITES system can reduce the primary energy demand by 87%, compared to the reference building without comprehensive energy concept design. The power quality assessment shows that the PV hosting capacity is limited up to 75%, which keeps the voltage level in the permissible range. The distributed energy storage system allows the PV prosumer to perform an active role by providing reactive power service to the system at the critical electricity feeder. The economic assessment reveals that the ITES is the most cost-effective investment option, where the battery energy storage (BES) system can become more attractive with incentive support and future cost reduction. The results from the consumer survey reveal that the willingness to pay (WTP) of the EEM and PV system in the detached single-family house is higher than the investment cost, which benefits both consumer and house developer. Technology is a key driver for providing the energy service to the energy system, while consumer behavior and acceptance can increase technology adoption. The Thai government should encourage the residential sector to become a smart user by taking technology, consumer behavior background, and essential energy policy into account.Intelligente Netztechnik, sogenannte Smart Grid-Technologie, kann durch die Einbindung von Informations- und Kommunikationstechnologie die Integration von erneuerbaren Energien in das bestehende Stromnetz verbessern. Wohn- und Gewerbegebäude können mit Hilfe eines Energiekonzepts durch die Integration von erneuerbaren Energien und Energiespeichern als Kleinkraftwerk fungieren. Allerdings gibt es in Thailand bisher wenig Analysen, wie man den Wohnungssektor für die Entwicklung intelligenter Netze nutzbar machen kann. Diese Forschungsarbeit konzentriert sich daher ausschließlich auf Wohngebäude. Die Technologiebewertung zeigt, dass Energieeffizienzmaßnahmen (EEM) umgesetzt werden müssen, um den Energiebedarf der Gebäude zu reduzieren. Ein thermischer Energiespeicher basierend auf Eis (ITES) ist eine geeignete Speicheranwendung, um Kühlenergie bereitzustellen, die der Hauptenergieverbraucher in Wohngebäuden ist. Durch die Integration von EEM, dem PV-System und dem ITES-System kann der Primärenergiebedarf um 87% reduziert werden, verglichen mit einem Referenzgebäude ohne umfassendes Energiekonzept. Die vorliegende Forschungsarbeit zeigt, dass die PV-Aufnahmekapazität auf bis zu 75% ausgeweitet werden kann, ohne dass Spannungsgrenzen verletzt werden. Der dezentrale Energiespeicher ermöglichst es zudem dem PV-Prosumer, durch Blindleistungseinsatz eine aktive Rolle im Stromsystem einzunehmen und Spannungsprobleme in kritischen Leitungssträngen zu reduzieren. Die wirtschaftliche Bewertung zeigt, dass das ITES die kostengünstigste Investitionsoption ist und das Batteriespeichersystem (BES) durch Anreize und künftige Kostensenkungen an Attraktivität gewinnen kann. Die Ergebnisse der durchgeführten Verbraucherbefragung zeigen, dass die Zahlungsbereitschaft für die EEM und das PV-System in Einfamilienhäusern höher ist als die Investitionskosten, was sowohl dem Verbraucher als auch dem Bauherrn des Hauses zugutekommt. Neue Technologien sind zentrale Elemente, um die Bereitstellung von Energiedienstleistungen im Energiesystem zu ermöglichen. Jedoch sind auch Nutzerverhalten und -akzeptanz wichtig, um die Verbreitung der Technologie zu erhöhen. Die thailändische Regierung sollte den Einsatz von Intelligenz im Wohnungssektor fördern und dabei Technologien, Verbraucherverhalten und wesentliche energiepolitische Aspekte berücksichtigen
    corecore