280 research outputs found

    Distribution Bottlenecks in Classification Algorithms

    Get PDF
    The abundance of data available on Wireless Sensor Networks makes online processing necessary. In industrial applications for example, the correct operation of equipment can be the point of interest while raw sampled data is of minor importance. Classification algorithms can be used to make state classifications based on the available data. The distributed nature of Wireless Sensor Networks is a complication that needs to be considered when implementing classification algorithms. In this work, we investigate the bottlenecks that limit the options for distributed execution of three widely used algorithms: Feed Forward Neural Networks, naive Bayes classifiers and decision trees. By analyzing theoretical boundaries and using simulations of various network topologies, we show that the naive Bayes classifier is the most flexible algorithm for distribution. Decision trees can be distributed efficiently but are unpredictable. Feed Forward Neural Networks show severe limitations

    Review of Energy Harvesting Technologies for Sustainable WSN

    Get PDF

    ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs

    Full text link
    [EN] The range of applications of Wireless Sensor Networks (WSNs) is increasing continuously despite of their serious constraints of the sensor nodesÂż resources such as storage, processing capacity, communication range and energy. The main issues in WSN are the energy consumption and the delay in relaying data to the Sink node. This becomes extremely important when deploying a big number of nodes, like the case of industry pollution monitoring. We propose an artificial neural network based energy-efficient and robust routing scheme for WSNs called ELDC. In this technique, the network is trained on huge data set containing almost all scenarios to make the network more reliable and adaptive to the environment. Additionally, it uses group based methodology to increase the life-span of the overall network, where groups may have different sizes. An artificial neural network provides an efficient threshold values for the selection of a group's CN and a cluster head based on back propagation technique and allows intelligent, efficient, and robust group organization. Thus, our proposed technique is highly energy-efficient capable to increase sensor nodesÂż lifetime. Simulation results show that it outperforms LEACH protocol by 42 percent, and other state-of-the-art protocols by more than 30 percent.Mehmood, A.; Lv, Z.; Lloret, J.; Umar, MM. (2020). ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs. IEEE Transactions on Emerging Topics in Computing. IEEE TETC. 8(1):106-114. https://doi.org/10.1109/TETC.2017.26718471061148

    Connectivity, Coverage and Placement in Wireless Sensor Networks

    Get PDF
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes

    Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system

    Get PDF
    Due to the limited resource and vulnerability in wireless sensor networks, maximizing the network lifetime and improving network survivability have become the top priority problem in network topology optimization. This article presents a wireless sensor networks topology optimization model based on complex network theory and cyber-physical systems using software-defined wireless sensor network architecture. The multiple-factor-driven virtual force field and network division–oriented particle swarm algorithm are introduced into the deployment strategy of super-node for the implementation in wireless sensor networks topology initialization, which help to rationally allocate heterogeneous network resources and balance the energy consumption in wireless sensor networks. Furthermore, the preferential attachment scheme guided by corresponding priority of crucial sensors is added into scale-free structure for optimization in topology evolution process and for protection of vulnerable nodes in wireless sensor networks. Software-defined wireless sensor network–based functional architecture is adopted to optimize the network evolution rules and algorithm parameters using information cognition and flow-table configure mode. The theoretical analysis and experimental results demonstrate that the proposed wireless sensor networks topology optimization model possesses both the small-world effect and the scale-free property, which can contribute to extend the lifetime of wireless sensor networks with energy efficiency and improve the robustness of wireless sensor networks with structure invulnerability

    Autonomous deployment for load balancing k-surface coverage in sensor networks

    Get PDF
    published_or_final_versio

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Energy Aware Algorithms for managing Wireless Sensor Networks

    Get PDF
    While the majority of the current Wireless Sensor Networks (WSNs) research has prioritized either the coverage of the monitored area or the energy efficiency of the network, it is clear that their relationship must be further studied in order to find optimal solutions that balance the two factors. Higher degrees of redundancy can be attained by increasing the number of active sensors monitoring a given area which results in better performance. However, this in turn increases the energy being consumed. In our research, we focus on attaining a solution that considers several optimization parameters such as the percentage of coverage, quality of coverage and energy consumption. The problem is modeled using a bipartite graph and employs an evolutionary algorithm to handle the activation and deactivation of the sensors. An accelerated version of the algorithm is also presented; this algorithm attempts to cleverly mutate the string being considered after analyzing the desired output conditions and performs a calculated crossover depending on the fitness of the parent strings. This results in a quicker convergence and a considerable reduction in the search time for attaining the desired solutions. Proficient cluster formation in wireless sensor networks reduces the total energy consumed by the network and prolongs the life of the network. There are various clustering approaches proposed, depending on the application and the objective to be attained. There are situations in which sensors are randomly dispersed over the area to be monitored. In our research, we also propose a solution for such scenarios using heterogeneous networks where a network has to self-organize itself depending on the physical allocations of sensors, cluster heads etc. The problem is modeled using a multi-stage graph and employs combinatorial algorithms to determine which cluster head a particular sensor would report to and which sink node a cluster head would report to. The solution proposed provides flexibility so that it can be applied to any network irrespective of density of resources deployed in the network. Finally we try to analyze how the modification of the sequence of execution of the two methods modifies the results. We also attempt to diagnose the reasons responsible for it and conclude by highlighting the advantages of each of the sequence

    DESIGN OF RELIABLE AND SUSTAINABLE WIRELESS SENSOR NETWORKS: CHALLENGES, PROTOCOLS AND CASE STUDIES

    Get PDF
    Integrated with the function of sensing, processing, and wireless communication, wireless sensors are attracting strong interest for a variety of monitoring and control applications. Wireless sensor networks (WSNs) have been deployed for industrial and remote monitoring purposes. As energy shortage is a worldwide problem, more attention has been placed on incorporating energy harvesting devices in WSNs. The main objective of this research is to systematically study the design principles and technical approaches to address three key challenges in designing reliable and sustainable WSNs; namely, communication reliability, operation with extremely low and dynamic power sources, and multi-tier network architecture. Mathematical throughput models, sustainable WSN communication strategies, and multi-tier network architecture are studied in this research to address these challenges, leading to protocols for reliable communication, energy-efficient operation, and network planning for specific application requirements. To account for realistic operating conditions, the study has implemented three distinct WSN testbeds: a WSN attached to the high-speed rotating spindle of a turning lathe, a WSN powered by a microbial fuel cell based energy harvesting system, and a WSN with a multi-tier network architecture. With each testbed, models and protocols are extracted, verified and analyzed. Extensive research has studied low power WSNs and energy harvesting capabilities. Despite these efforts, some important questions have not been well understood. This dissertation addresses the following three dimensions of the challenge. First, for reliable communication protocol design, mathematical throughput or energy efficiency estimation models are essential, yet have not been investigated accounting for specific application environment characteristics and requirements. Second, for WSNs with energy harvesting power sources, most current networking protocols do not work efficiently with the systems considered in this dissertation, such as those powered by extremely low and dynamic energy sources. Third, for multi-tier wireless network system design, routing protocols that are adaptive to real-world network conditions have not been studied. This dissertation focuses on these questions and explores experimentally derived mathematical models for designing protocols to meet specific application requirements. The main contributions of this research are 1) for industrial wireless sensor systems with fast-changing but repetitive mobile conditions, understand the performance and optimal choice of reliable wireless sensor data transmission methods, 2) for ultra-low energy harvesting wireless sensor devices, design an energy neutral communication protocol, and 3) for distributed rural wireless sensor systems, understand the efficiency of realistic routing in a multi-tier wireless network. Altogether, knowledge derived from study of the systems, models, and protocols in this work fuels the establishment of a useful framework for designing future WSNs
    • …
    corecore