460 research outputs found

    A review of sensor technology and sensor fusion methods for map-based localization of service robot

    Get PDF
    Service robot is currently gaining traction, particularly in hospitality, geriatric care and healthcare industries. The navigation of service robots requires high adaptability, flexibility and reliability. Hence, map-based navigation is suitable for service robot because of the ease in updating changes in environment and the flexibility in determining a new optimal path. For map-based navigation to be robust, an accurate and precise localization method is necessary. Localization problem can be defined as recognizing the robot’s own position in a given environment and is a crucial step in any navigational process. Major difficulties of localization include dynamic changes of the real world, uncertainties and limited sensor information. This paper presents a comparative review of sensor technology and sensor fusion methods suitable for map-based localization, focusing on service robot applications

    Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles

    Get PDF
    The main goals of this research were to enhance a commercial off the shelf (COTS) software platform to support unmanned ground vehicles (UGVs) exploring the complex environment of tunnels, to test the platform within a simulation environment, and to validate the architecture through field testing. Developing this platform will enhance the U. S. Army Engineering Research and Development Center’s (ERDC’s) current capabilities and create a safe and efficient autonomous vehicle to perform the following functions within tunnels: (1) localization (e.g., position tracking) and mapping of its environment, (2) traversing varied terrains, (3) sensing the environment for objects of interest, and (4) increasing the level of autonomy of UGVs available at the ERDC. The simulation experiments were performed in the STAGE Simulator, a physics-based multi-scale numerical test bed developed by Robotic Operating System (ROS). Physical testing was conducted in Vicksburg, MS using a Coroware Explorer. Both the simulation and physical testing evaluated three SLAM algorithms, i.e., Hector SLAM, gMapping, and CORESLAM to determine the superior algorithm. The superior algorithm was then used to localize the robot to the environment and autonomously travel from a start location to a destination location. Completion of this research has increased the ERDC’s level of autonomy for UGVs from tether to tele-operated to autonomous

    AN INTEGRATED SIMULATION APPROACH FOR AUV IMAGE-BASED SLAM NAVIGATION

    Get PDF
    This thesis develops a simulation framework for undersea feature-based navigation. Using an autonomous underwater vehicle (AUV) to locate an item of interest on the seafloor is a capability that would greatly benefit the Navy. AUVs provide a gateway toward removing the workforce requirement; however, they are still costly both in acquisition and maintenance. A solution to this problem is using two AUVs, one with increased capability and charged with finding and marking seafloor items with a beacon. An expendable AUV outfitted with cost-effective sensors would relocate, identify and neutralize the threat. Using undersea imaging to correlate seafloor images to an a priori image mosaic together with a ultra short baseline (USBL) beacon allows the AUV to complete challenging mission objectives without traditional navigation systems. Incremental Smoothing and Mapping 2 (iSAM2) is a Simultaneous Localization and Mapping (SLAM) technique that can be used by the AUV for position localization and is an appropriate technique, with image and USBL sensing, for real-time navigation operations. A simulation framework provides the ability to evaluate an AUV's performance while minimizing the risk of real-world operations. The framework is composed of a software architecture that allows for testing using the same software applied in real-world operations. This thesis demonstrates this framework and provides analysis for its usability for image-based SLAM.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Forests

    Get PDF
    In this paper, we provide an overview of positioning systems for moving resources in forest and fire management and review the related literature. Emphasis is placed on the accuracy and range of different localization and location-sharing methods, particularly in forested environments and in the absence of conventional cellular or internet connectivity. We then conduct a second review of literature and concepts related to several emerging, broad themes in data science, including the terms |, |, |, |, |, |, and |. Our objective in this second review is to inform how these broader concepts, with implications for networking and analytics, may help to advance natural resource management and science in the future. Based on methods, themes, and concepts that arose in our systematic reviews, we then augmented the paper with additional literature from wildlife and fisheries management, as well as concepts from video object detection, relative positioning, and inventory-tracking that are also used as forms of localization. Based on our reviews of positioning technologies and emerging data science themes, we present a hierarchical model for collecting and sharing data in forest and fire management, and more broadly in the field of natural resources. The model reflects tradeoffs in range and bandwidth when recording, processing, and communicating large quantities of data in time and space to support resource management, science, and public safety in remote areas. In the hierarchical approach, wearable devices and other sensors typically transmit data at short distances using Bluetooth, Bluetooth Low Energy (BLE), or ANT wireless, and smartphones and tablets serve as intermediate data collection and processing hubs for information that can be subsequently transmitted using radio networking systems or satellite communication. Data with greater spatial and temporal complexity is typically processed incrementally at lower tiers, then fused and summarized at higher levels of incident command or resource management. Lastly, we outline several priority areas for future research to advance big data analytics in natural resources.U01 OH010841/OH/NIOSH CDC HHSUnited States/U54 OH007544/OH/NIOSH CDC HHSUnited States
    corecore