167 research outputs found

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed

    Dynamically reconfigurable optical access network

    Get PDF
    This dissertation presents the research results on a fiber-optic high-bitrate access network which enables dynamic bandwidth allocation as a response to varying subscribers' demands and bandwidth needs of emerging services. The motivation of the research is given in Chapter 1 "Introduction" together with a brief comparative discussion on currently available and future access networks. The idea of wavelength reconfigurability in the last-mile networks is described as a solution for more efficient bandwidth utilization and a subject of the Broadband Photonics project. Chapter 2 "Wavelength-flexible WDM/TDM access network - architecture" provides a comprehensive description of the proposed solution with each network element being analyzed in terms of its functionalities. This includes a colorless optical network unit and a reconfigurable optical add/drop multiplexer. An estimation of power budget is followed by the choice of wavelength set and network control and management layer overview. In Chapter 3 "Reflective transceiver module for ONU" after discussing different communication schemes and modulation formats three approaches to a colorless high-bitrate transmitter are analyzed in detail. This includes experiment and simulation results on a reflective semiconductor optical amplifier, reflective electro-absorption modulator and a Michelson-interferometer modulator. The Chapter is concluded with a comparative discussion. Chapter 4 "Reconfigurable optical add/drop multiplexer" discusses another key element in the proposed network architecture which is an integrated structure of micro-ring resonators providing wavelength reconfigurability. The measured characteristics assess the applicability of the device able to support unicast and multicast transmission. A range of possible sources of signal degradation in the access links are analyzed in Chapter 5 "Transmission and network impairments in the access network". An estimation of potential power penalties resulting from such impairments in the proposed system follow afterwards. Special attention is paid to optical in-band crosstalk penalties and improvement methods in Chapter 6 "Interferometric crosstalk in the access network with an RSOA". This subject is treated extensively with the support of mathematical considerations and experimental results. Proof-of-concept experiments of the proposed network architecture are presented in Chapter 7 "Reconfigurable WDM/TDM access network - experiments". The results of bidirectional transmission of high-bitrate WDM signals in different wavelength allocation schemes are discussed in detail. From there, by means of simulations the behavior of a full-scale network is assessed. In Chapter 8 "Migration towards WDM/TDM access network" the migration scenario from currently deployed fiber-optic access networks towards the novel solution is proposed. Afterwards, a short dispute on the economics of last-mile fiber technologies is included. Finally, the work is concluded and potential future research ideas based on this thesis are given in Chapter 9 "Conclusions and further work"

    Light work(s)

    Get PDF

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; PĂ©rez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    NFV Orchestration over Disaggregated Metro Optical Networks with End-to-End Multi-Layer Slicing enabling Crowdsourced Live Video Streaming

    Get PDF
    Network infrastructure must support emerging applications, fulfill 5G requirements, and respond to the sudden increase of societal need for remote communications. Remarkably, crowdsourced live video streaming (CLVS) challenges operators' infrastructure with tides of users attending major sport or public events that demand high bandwidth and low latency jointly with computing capabilities at the networks' edge. The Metro-Haul project entered the scene proposing a cost-effective, agile, and disaggregated infrastructure for the metro segment encompassing optical and packet resources jointly with computing capabilities. Recently, a major Metro-Haul outcome took the form of a field trial of network function virtualization (NFV) orchestration over the multi-layer packet and disaggregated optical network testbed that demonstrated a CLVS use case. We showcased the average service creation time below 5 min, which met the key performance indicator as defined by the 5G infrastructure public private partnership. In this paper, we expand our field trial demonstration with a detailed view of the Metro-Haul testbed for the CLVS use case, the employed components, and their performance. The throughput of the service is increased from approximately 9.6 Gbps up to 35 Gbps per virtual local area network with high-performance VNFs based on single-root input/output virtualization technology

    Monolithic integrated reflective transceiver in indium phosphide

    Get PDF
    The work presented in this thesis is about an InP based monolithic integrated reflective transceiver meant for use in future fiber access networks at the user site. The motivation for this research results from the users’ demands for ever-increasing bandwidth at low cost of operation, administration and maintenance. We investigated solutions to these challenges with a network concept using a dynamically reconfigurable optical network topology with a wavelength router and a colorless optical network unit. This work focuses on developing the optical part of the optical network unit, a reflective transceiver. This reflective transceiver consists of three basic components: a tunable wavelength duplexer, a photodetector and a reflective modulator. The tunable wavelength duplexer separates two wavelengths, one for the downstream and one for the upstream signals, and guides them to the photodetector and the reflective modulator. The photodetector detects the downstream data. The reflective modulator modulates the light carrier with the upstream data and reflects it back to the network. The integrated transceiver was realized bymonolithically integrating these components on a common active-passive butt-joint layer stack based on InP technology. This approach not only offers high bandwidth for both downstream data and upstream data, but also lowers the cost of the device and the network operation because of the colorless operation at the user site. The main results obtained within this work are summarized as follows: an efficient and polarization insensitive tunable wavelength duplexer was realized; a new method to fabricate a reflective SOA has been proposed and demonstrated; a high performance waveguide photodetector based on SOA layer stack was successfully fabricated; a low cost photoreceiverwhich includes an InP photodetector and a SiGe amplifier was demonstrated; aworking monolithic integrated reflective transceiver based on InP was successfully realized and demonstrated; two monolithic integrated transceivers aiming for higher bandwidth have been designed and fabricated. In addition, a novel MMI reflector has been proposed and realized with high reflectivity. This work was funded by DutchMinistry of Economic Affairs through the Freeband Project Broadband Photonics Access, the Smartmix projectMemphis and the NRC Photonics

    All-optical aggregation and distribution of traffic in large metropolitan area networks using multi-Tb/s S-BVTs

    Get PDF
    Current metropolitan area network architectures are based on a number of hierarchical levels that aggregate traffic toward the core at the IP layer. In this setting, routers are interconnected by means of fixed transceivers operating on a point-to-point basis where the rates of transceivers need to match. This implies a great deal of intermediate transceivers to collect traffic and groom and send it to the core. This paper proposes an alternative scheme based on sliceable bandwidth/bitrate variable transceivers (S-BVTs) where the slice-ability property is exploited to perform the aggregation of traffic from multiple edges �� -to-1 rather than 1-to-1. This approach can feature relevant cost reductions through IP offloading at intermediate transit nodes but requires viable optical signal-to-noise ratio (OSNR) margins for all-optical transmission through the network. In this work, we prove through simulation the viability and applicability of this technique in large metro networks with a vertical-cavity-surface-emitting laser-based S-BVT design to target net capacities per channel of 25, 40, and 50 Gb/s. The study reveals that this technology can support most of the paths required for IP offloading after simulation in a semi-synthetic topology modeling a 20-million-inhabitant metropolitan area. Moreover, OSNR margins enable the use of protection paths (secondary disjoint paths) between the target node and the core much longer than primary paths in terms of both the number of intermediate hops and kilometers.European Union H2020 project PASSION, grant no. 780326 (http://www.passion-project.eu/)
    • …
    corecore